Bitchin100 Magazine

The Magazine Devoted to 8-bit Retro Laptop Users

In This Issue

Merchberger:
8085 Assembly Language Tutorial

Wiesen:
Detailed 8085 Instruction Set Reference

Schad:
RPN Calculator for the Model T

Remem Team:
Development News

Hogerhuis:
Editorial

July 2005: Issue 1, Number 1

8085 Assembly Language Programming
Roger Merchberger

Part One of Two

In this series, Roger will introduce us to assembly language
programming on the CPU used in the Model 100 and NEC 8201A

P> A little personal history: | purchased my
first computer in 1984, a Tandy Color
Computer 2 with 16K RAM and extended
BASIC. | taught myself RSBasic, RS-DOS, 0OS-
9, Basic09 and 6809 Assembly Language
before | upgraded to a Tandy Color
Computer 3 in 1986. These skills came in
handy in college as | was expected to learn
6800 Assembly in a few of my classes. I'd
realized Tandy computers to be very
powerful, even if they weren't the most
popular; so in 1989 when | required a more
portable solution, | purchased a Tandy 200.

I'd found that the machine was the most
complete and user-friendly machine
available at the time. The evidence speaks
for itself — it's the only computer | never
voided the warranty on! As a matter of fact,
| never opened the computer's case for at
least a decade after | purchased it, and that
was not to repair it, but using it as a test-
bed to learn about repairing other broken
Tandy 200's. 16 years later, and I've finally
had to open the case to replace the on-
board NiCd battery, and whilst | was in
there, | upgraded the memory to 72K RAM.
I'm typing this "beginner's foray" into 8085
Assembly Language on this very same
machine.

With it's built-in spreadsheet program,
2 — Bitchin100 Magazine - July 2005

larger screen and full keyboard, | found it a
most complete solution to portable
computing. Amazingly, it was so complete,
that it's also the only machine that I've ever
owned that | considered more an appliance or
tool than a toy. As such, I'd never learned the
nuances of the hardware itself, including the
processor, as it seems | never really *needed*
to. Well, that's about to change.

Although I'm an experienced [albeit rusty]
6809 Assembly Language programmer, l've
never delved into the Intel world at all until
now. I'm going to take you with me through
my first baby steps of programming the 8085
processor and hopefully it will be a pleasant
learning experience for us all.

As a preamble to learning any assembly
language is knowing how to deal with binary
and hexadecimal (or for brevity, hex)
numbers. On earlier processors like the DEC
PDP/11, octal was also very important, but it's
less so on 8-bit microprocessors like the 8085.
Binary is base 2 - off or on, 0 or 1, and this is
the computer's true numerical encoding.
Unfortunately, it's fairly difficult for humans to
deal with binary directly, so that's why we use
octal (base 8, or 3 binary digits or bits) or hex
(base 16, or 4 bits - otherwise called a
"nybble"). Decimal is not nearly as useful to
the computer itself as it is to humans, and so |

encourage you to practice getting used to
not only how hex works, but thinking in it
directly. If | told you to start your program
at memory location 62600, to the
computer it's represented as
1111010010001000. You can see that this
is not exactly 'human-readable' and
converting base 2 to base 10 and vice-
versa is difficult, at least in your head.
However, if you break down the 16 bit
address above into 4-bit chunks, or
“nybbles”, it's much easier to deal with the
location as represented in hex, which is
F844. Any CPU with a 16-bit address bus
has access to memory locations from 0 to
FFFF hex, or in decimal, 0 to 65535.

If you would like a quick example as to why
it's easier to deal with hex directly, look at
the ASCII codes that your computer uses
for character display. It doesn't seem very
intuitive that upper case characters start at
65 decimal and lower case characters start
at 97 decimal, until you see that those
convert to 41 and 61 hex. To change
uppercase to lowercase, just add 20 hex to
the character, subtract that value to
change lowercase to uppercase.

Once you get the basics of computer
numbering systems down, the next thing
we will need to do is learn the hardware
architecture itself. Knowing what registers
are available and their purpose is
paramount to Assembly language
programming, just like knowing the
difference between string, integer or
floating point variables in Basic.

In the 8085, all registers either store 8 bits
or 16 bits of information. 8 bits of
information gives a range of values
between 0 and 255 decimal or 0 to FF hex.
The 16-bit registers can store 0 to 65535
decimal, or 0 to FFFF hex.

There are several registers in the 8085 that

we can use - some of which have very
specialized uses. | will go over these
registers and include a brief synopsis as to
their function.

PC - Program Counter: This is a 16-bit
register that keeps the CPU from 'getting
lost." It keeps track of the memory location
of the next instruction. If it doesn't keep
track of where it is in the program, it could
never get anything done in an orderly
manner.

A - Accumulator: This is an 8-bit register
that is used mainly for mathmatical
operations, like adding and subtracting 2
operands.

B and C, D and E: Storage registers that can
be used as either 4 8-bit registers, or 2 16-
bit registers. These can be used to hold
temporary values without saving them to
RAM, as reading and writing RAM requires
many more CPU cycles than working with
internal registers.

H and L: These can be used as 2 8-bitor 1
16-bit storage register(s) if you choose, but
together these two registers have much
more powerful abilities, as this pair of
registers can be used as a pointer anywhere
in memory, like a stack pointer or index
pointer.

PSW, or Program Status Word: An 8-bit
register, of which 5 bits are used. These
show the 'status' of a mathmatical
operation. The five bits are broken down
thusly:

Z (Zero) flag - this flag is set if a
mathematical operation results in a value
equal to Zero.

C (Carry) flag - If an add operation resulted
in any carry - as in the result would have
been bigger than 255 decimal (FF hex), this
bit will be set.

July 2005 - Bitchin100 Magazine — 3

P (Parity) flag - this bit will be set if there are
an even number of 1 bits inthe result of the
operation.

S (Sign) flag - During a mathmatical
operation, if the 7th bit (also called the Most
Significant Bit) of the Accumulator is a 1, this
bit is set; this is significant when using signed
numbers - if the MSB is 0, then the number is
positive; if the MSB is 1, then the number is
negative. This gives a range of signed
numbers (in 8 bits) of -128 to +127; 16-bit
numbers from -32768 to +32767.

AC (Auxiliary Carry) If a "half-carry" was
performed (if bit 4 is set after an addition)
this bit will be set. Chances are, of all the bits
in the Program Status Word, you'll use this
one the least.

To be honest, I've gotten a bit wordy thus far,
and yet, I've barely scratched the surface of
this topic - | really do recommend getting a
few good books about 8085 programming. If
you can't find those, books on 8080A
programming are a good bet too, as these
processors are very similar, and the 8085 is
"backwards compatible" with the 8080. This
means that the 8085 can execute all of the
instructions that the 8080 can, but there's a
few new tricks it can do that were not
designed into the 8080.

For learning the processor itself, |
recommend "8080A-8085 Assembly
Language Programming" by Lance A.
Leventhal - it's very in-depth with respect to
the instruction set, Program Status Word bits,
and the differences between the 8080A and
the 8085 processors. Honestly though, it's
assembly language programming examples
are definitely not "light reading." For better
reading about putting the instruction set into
good use, | would recommend " insert the

4 — Bitchin100 Magazine - July 2005

name of the book here " | don't currently
own this book (yet) but | have it on good
authority that it will put everything you
learned in the Leventhal book to good
practice.

You're going to need to know the actual
instruction set for the 8085, and I've listed a
couple of good books above that you should
consult for deeper understanding of it, but |
would be remiss if | didn't at least outline
some of the more common instructions,
especially those that are used in the
assembly language examples that are to
follow. (Yes, | *will* get to the good stuff
eventually! ;-))

Here are some of the more frequently used
assembly language instructions:

ADC, AClI Add A accumulator with carry
(immediate)

ADD, ADI Add A accumulator (immediate)
ANA, ANl Logical And (immediate)

CALL Call a subroutine

CMP, CPI Compare register with a value
(immediate)

IN, OUT Input value from a Port /
Output value to Port

INR, DCR Increment (decrement) a
register or memory

INX, DCX Increment (decrement) a 16-bit
register pair

JC, JNC Jump on carry (not carry)

JZ, JNZ Jump on zero (not zero)

JMP Jump unconditionally

LDA Load the A accumulator with a
value

LXI Load a 16-bit value into a

register pair

MOV, MVI Move data between registers or
memory (immediate)

RAL, RAR Rotate with carry Left (Right)
RET Return from a subroutine

STA Store A Accumulator to memory
SUB, SUI Subtract A Accumulator
(immediate)

There are also certain "commands" that
the assembler uses to perform certain
functions - these statements don't actually
represent CPU instructions, but set up the
environment for your program.

For example, how do you tell the assembler
where in memory you want to put your
program? If you don't tell it where, the
assembler will assume address 0000 hex -
but that's ROM space, so the assembler will
generate an error. To tell the assembler
where to start in memory, use the ORG
(origin) directive. Also, you'll want to use
labels when naming loops and data spaces
so the assembler can keep track of the
addresses; it'll save you a lot of trouble
than doing it manually!

Here's an assembly language that doesn't
actually *do* anything, but shows how to
use several of the assembler's directives:

ORG 62600 ; start the first
program address at location 62600

DISPLY: EQU 5A58H ; location of
the ROM routine to print a null-terminated
string.

CHRGET: EQU 12CBH ; location of
the ROM routine that reads the keyboard
and returns the ASCII equivalent.

BEGIN: JMP START ; jump over
the data to follow, more on this later.

; Anything starting with a semicolon is a
comment and is ignored by the assembler.

; Next, we're going to define a string,
followed a Carriage Return and Line Feed,
and ended by a NULL value to denote the
end of the line.

STR1:DB "Here's a string!",10,13,00

; Next, we're going to just denote a CRLF
string, this can be handy for string output.

CRLF:DB 10,13,00

; If we needed to allocate (for example) 20
bytes of RAM for a buffer or stack, we'd use
the DS (Define Storage) directive.

STK1:DS 20 ; 20 bytes reserved for
our nefarious purposes!

; Finally, we're going to get to the real
program...

START: RET ; We're just going to
return back to BASIC or whatever called us...

July 2005 - Bitchin100 Magazine — 5

OK, for a program that really does nothing
but take up space, there's still a little
explaining to do. Firstly, the JMP instruction
at the beginning of the program is actually
superfluous, and technically increases the
size of the program by 3 bytes, so why did |
do it? Simple - for an old fart like me, it's
called "one less thing to remember." When
you go to BASIC and you load a machine
language program, it will give you 3
addresses, like this:

Top: 62600 [[Remember this from the
ORG statement?]]

End: 62644
Exe: 62600

If we had not put that JMP instruction at the
beginning of the program to jump over all
the data, we would have had to remember
where the START: address was in memory,
and set *that* as the Exe: address. By
using the JMP, you know that the Top:
address of the program and the Exe:
address of the program are the same,
making it a bit simpler for those of us new
to assembly language programming. In my
opinion, definitely worth 3 bytes. ;-)

The EQU actually takes up no memory in
the program - it's just there to set a human-
readable label to a value. It's a lot easier to
remember that CHRGET is the location of
the routine to read a key instead of 12CBH!

The other directives that | used in the
program are pretty well commented in the
program, so we're going to move on.

Why reinvent the wheel?

There are a lot of tricks that a fledgling

assembly language programmer can use,
and probably the biggest timesaver of all
would be re-using the machine code that

6 — Bitchin100 Magazine - July 2005

already exists in your computer. Microsoft
had to write a lot of routines to get your
Model T to do what it can do, including
reading the keyboard, printing characters and
lines to the screen and printer, and even
serial port I/0. Why should you rewrite
everything from scratch when Microsoft did
most of it for you? You don't! However, you
do need to learn how to use the routines that
they provided, usually by setting specific
values in certain registers before you call the
subroutine.

For our next example, which is about the 3rd
version of the very first assembly language
program | wrote for the Model 10x, we'll be
using these routines:

LCDOUT - 4B44H ; Output a single character
in A to the display.

CHRGET - 12CBH ; Wait for a keypress from
the keyboard, and

: store that value in A

DISPLAY - 5A58H ; Output a Null-terminated
string in memory (pointed

; to by HL) to the display.

For the Model 200 you'd need to find the
correct entry point addresses.

I've commented each line and the routines
pretty well in the program itself, so it should
be mostly self-explanetory as to what the
program's doing and why. However, if you
have questions that | (obviously) cannot
forsee here in this document, please email
me at z@30below.com and please put '‘8085'
somewhere in the subject. That will make it
much easier for me to respond to your email.

A note here about comments: There are good
comments and there are bad comments.
Most of the time, bad comments are actually

worse than no comments at all! For
example, if you have this:

LABEL: ADI 12 : Add 12H to the
accumulator

First off, you can tell from the instruction
(ADI - Add Immediate to Accumulator) that
it's going to add 12 to the A register. The
comment really isn't saying anything you
don't already know, and thanks to the typo

in the comment, at first glance one may not

notice that the program actually adds OBH
to the A register. This is a *bad* comment.

OK, so a lot of you are saying "Who'd be
stupid enough to do that?" Quite often, we
comment the program at the beginning of
the code writing phase, so we can keep
track of what we were trying to accomplish
with the program. However, if the program
didn't work as expected, we may make
changes to the code and forget to modify
the associated comments. The original line
could have read:

LABEL: ADI 18
accumulator

: Add 12H to the

at which point the commect would be
correct (yet still pointless) but during the
debugging phase you found that 18
decimal didn't do what was expected in the
program, so it was changed to 12, but the
comment was not modified. This error
happens quite often (I've done it on many
occasions myself) and doesn't make one a
bad person per se, but it would be much
better to not get into that habit in the first
place.

What is much better is to try to state what

you *want* to happen in each line, like this:

LABEL: LDI 12
space in the A reg.

: Store an ASCII

Now, altho the code itself is obviously
incorrect, the comment itself is right. If we

now see that we're trying to work with
unprintable characters, we can modify the
command thusly:

LABEL: LDl 32
in the A reg.

; Store an ASCII space

It made the program do what we want, and
the comment helps inform others (or the
author in 6 months) as to *why* that
instruction is there.

Also, you should put a small block of
comments before each subroutine you write
to give an overview of that routine, and also
warn anyone looking at the code if it clobbers
any registers or memory locations. You will
also want to mention any entry and/or exit
parameters. Some of the hardest bugs to
track down are when registers or memory is
modified and those changes are not taken
into account. Let's say you have a particularly
useful piece of code in a subroutine that
you're proud of and you comment it thusly:

; My new subroutine!

; Holy Kukamunga, the darned thing works!
And it works *Schweet!*

; d00d, | should get the Nobel Piece-o-code

OK, Now just what good did that do? Let's try
it again like this:

; Subroutine: BRKNYB (Break a byte into 2
nybbles)

; Requires register A to be set to the value to
be seperated.

: Returns: Location F850H as the Most
Significant Nybble

; Location F851H as the Least
Significant Nybble

; Clobbers: HL, all other registers preserved.
July 2005 - Bitchin100 Magazine — 7

With the comments above, you have a fair
idea as to what the routine does, and you
also know that if you have a value you
need to keep in register pair HL, you'll need
to save it somewhere before calling this

routine; but register pairs BC or DE are safe.

In these days of 200 Gig hard drives a lot of
people say "Storage is cheap." With 3 GHz
processors, they say "Cycles are cheap." In
this case: "Comments are cheap."
Comments are cheap insurance to jog your
memory (or someone else's) about what a
line of code or a routine does - but if used
incorrectly, they can do more harm than
good.

Stay tuned for Part 2!

DLPilot

Save and load Model T
and WP-2 files
To and From your
Palm-compatible PDA

http://bitchin100.com/dIpilot

8 — Bitchin100 Magazine - July 2005

As Seen On €Y'

The purpose of the "As Seen on Ebay"
column is to reintroduce old technology that
(retro geek though you may be) you just
haven't heard about yet. Or maybe you did
but didn't investigate it.

This time we'll take a look at the Booster Pak,
by Traveling Software.

Basically the Booster Pak adds about an inch
of thickness to the bottom of the Model 100
or T102. That's a a big burrito, my friend. But
what do you get?

. 96K standard RAMDisk file storage (self-powered)

. 2 standard Molex expansion ROMs carriers

. 11 standard DIP sockets for 32K RAM chips or EPROMS
. Built-in TS-DOS to access RAMDisk or external storage
. Xmodem file transfer directly to/from RAMDisk

. Asteroids!

. ROM-based software smart enough to coordinate it all.

More information on the Booster Pak can be
found at http://www.geocities.com/m100er/

The Vault

HPCalc, HP Calculator Simulator
Scott T. Schad

You may remember this hit program from the
Compuserve Model 100 SIG
Scott has permitted us to bring this gem back from The Vault.

hpCALC is an easy-to-use RPN (reverse-polish- these commands (except ESC) by sliding the menu
notation) emulator for Tandy model 100/102 bar and pressing the indicated function key.
laptops. It operates identically with Hewlett- Commands: The "DEG” and "rad” function keys
Packard calculators, but is not programmable. toggle capitalization on and off to indicate the

This current trig
documentation mode. The
assumes you "Pi” key

are sufficiently returns that
familiar with number up
HP calculators to 14 digits.
to be The "fix”
interested in key takes
this program, ; the integer
so it value of the
concentrates on the unique aspects of hpCALC current number in the x- register and trims decimals
instead of teaching you RPN. to that number of displayed digits. You can set
hpCALC's best feature is its simple user from 0-14 digits, with a default of 5. Attempting to
interface. All options appear on the screen, use a number out of this range will reset the digits
where they are easily accessed by a sliding-bar back to 5. The "p-r” and "r-p” are polar/

menu. You don‘t need to memorize cryptic rectangular conversions: put x in the x register and
keyboard combinations, although several y in the y register, hit ’r-p”, and the radius will be
keyboard shortcuts are provided. left in x with the angle (in deg or rad) left iny. "p-r”
Numeric entry can be from the embedded keypad reverses the calculation.

or top row of keys. Use an "E” or "e” to enter Storage: the ”"Istx” key will bring up the last x-
powers of ten. Any calculation option shown to register value which was entered or used in a

the left of the stack window can be selected by calcualtion. ”sto” and "rcl” provide access to a
using the up and down cursor keys to slide a single data storage register.

highlighted bar to the desired row. Hit the F1-F4 Calculation errors: most errors are self-recovering.
function keys to execute the calculation option If you try to divide by zero for example, an

when its row is selected. The four math function "ERROR” message is briefly displayed in the x
keys (+-*/) below the stack window keep their register, then x is redisplayed.

functions regardless of the menu bar position.

Keyboard shortcuts; "r’=roll down stack;

"R”=roll up stack; "c”=clear x; "C"=clear Available in electronic form on the web at

registers; "D” or "d"=delete x; ”"s” or "S"=swap http://bitchin100.com/hpcalc
x&y; ESC=exit program. You can execute all of

July 2005 - Bitchin100 Magazine — 9

Model 100/102/200 Program Listing:

0 "hpCALC (c) 1987 Scott Schad--REGISTER
FOR $10: 3943 S. Delaware Pl., Tulsa, O
K 74105
1 CLEAR1000:SCREENO,O:CLS:KEYON:ONERRORG
0TO83:LX$=""0":X$(1)=""0":X$(2)="0":X$(3)=
"0":X$(4)=""0":K6=57.29577951308232:ONKEY
GOosuB31,41,51,61,71,72,73,74:K$(1)=""1/X
XA2 "+CHR$(137)+"X Yy X" :E$=CHR$(27)+
"p"iF$=CHR$(27)+"q
2 R$(1)=CHR$(240)+STRINGS(6,CHR$(241))+E
$+" hpCALC "+F$+STRINGS$(6,CHR$(241))+CHR
$(242):K$(2)="log 10™x In e™x":R$(3)=
CHR$(245)+STRING$(20," ")+ES$+"X"+F$:K$(3
)="sin cos tan "+CHR$(136)+" ":R$(2)
=CHR$(244)+STRING$(20, CHR$(241))+CHR$ (24
9)
3 K$(4)="asin acos atan Fix":R$(4)=CHR$(
245)+STRING$(20," ")+E$+"y"+F$:KS$(5)=""1"
+CHR$(154)+"p p"+CHR$(154)+"r int frc
" JF=1:FX=5:R$(5)=CHR$(245)+STRING$(20, "
"Y+ES+"Z"+FS:KS(6)=""Istx DEG rad del"
-R$(6)=CHR$(245)+STRING$(20," ")+ES$+"t"+
F$
4 K$(7)="rol"+CHR$(152)+" clrg sto rcl”
:R$(7)=CHR$(246)+STRING$(20,CHR$(241))+C
HR$(247) :K$(8)=""rol"+CHR$(153)+" swap cl
X chs":R$(8)=" + - * / ":FORI=
OTO7: 1FI<7THENPRINT@1*40,K$(1+1); :GOTO6

5 PRINT@1*40,E$+K$(1+1)+F$;
6 IFI<7THENPRINT@I*40+18,R$(1+1);:GOTOS

7 PRINT@1%40+20,E$+R$(1+1)+F$;

8 PRINT@1*40+18,H$(1+1); :NEXTI:P=7:NP=7:
GOSUB75

9 ER=0:PRINT@99,X$(1): I$=INKEY$: IFI$="""T
HEN9

10 IF1$=""c"THENP1=P:P=7:GOSUB51:P=P1:GOT
09

11 IF1$="C"THENP1=P:P=6:GOSUB42:P=P1:GOT
09

12 IF1$="D"ORI$=""d""THENP1=P:P=5:GOSUB63:
P=P1:GOTO9

13 IFI$="S"ORI$=""s"THENP1=P:P=7:GOSUB41:
P=P1:GOTO9

14 1F1$="r"THENP1=P:P=7:GOSUB32:P=P1:GOT
09

15 IF1$="R"THENP1=P:P=6:G0OSUB33:P=P1:GOT
09

16 J=ASC(1$): IFJ<32THEN23

17 K=INSTR(1,"-0123456789_Ee", 1$): IFK>0A

NDJF=1THENGOSUB79: X$(1)="

18 IFK=0THEN22

19 IFK>0ANDX$(1)=""0"0ORKANDX$(1)="""0RK>0A
NDCR=1THENX$(1)=1$:CR=0:GOSUB75:GOT022

20 IF1$=""-""ANDVAL(X$(1))=0THENCR=1:GOTO02
2

21 IFK>0THENX$(1)=X$(1)+1$:PRINT@99, X$(1
)

22 JF=0:G0TO09

23 1FJ=27THENMENU

24 L=LEN(X$(1)) : IFL>0ANDJ=8THENX$(1)=LEF
T$(X$(1),L-1) :GOSUB75:GOTO9

25 IFLEN(X$(1))=0THENX$(1)=""0":GOSUB75:G
0TO09

26 1FJ=13THENGOSUB79:X$(1)=X$(2) :GOSUB75
:CR=1:GOTO9

27 1FJ=30THENNP=P-1: IFNP<OTHENNP=7

28 1FJ=31THENNP=P+1: 1FNP>7THENNP=0

29 IFNP<>PTHENPRINT@P*40,K$(P+1);

30 PRINT@NP*40,E$+KS(NP+1)+F$; -P=NP:GOTO
9

31 IFP<>5THENLX$=X$(1)

32 IFP=7THENLX$=X$(1) : X$(1)=X$(2) : X$(2)=
X$(3) :X$(3)=X$(4) : X$(4)=LX$:IJF=1:CR=1:GO
SUB75:RETURN

33 IFP=6THENLX$=X$(1) : X$(1)=X$(4) : X$(4)=
X$(3) : X$(3)=X$(2) : X$(2)=LX$:IJF=1:CR=1:GO
SUB75:RETURN

34 1FP=5THENGOSUB79:X$(1)=LX$:JF=1:GOSUB
75-RETURN

35 IFP<>4THEN37

36 R=SQR(VAL(X$(1))"2+VAL(X$(2))"2) :RA=(
ATN(VAL (X$(2))/VAL(X$(1)))*K6) : X$(1)=STR
$(R) :X$(2)=STR$(RA) : JF=1:GOSUB75: RETURN

37 1FP=3THENGOSUB82:JF=1:GOSUB75:RETURN

38 IFP=2THENX$(1)=STR$(SIN(VAL(X$(1))/K6
)) :JF=1:GOSUB75:RETURN

39 IFP=1THENX$(1)=STR$(LOG(VAL(X$(1)))*.
4342945) : JF=1:GOSUB75:RETURN

40 IFP=0THENJF=1:X$(1)=STR$(1/VAL(X$(1))
) :GOSUB75:RETURN

41 LX$=X$(1) : IFP=7THENX$(1)=X$(2) : X$(2)=
LX$:JF=1:CR=1:GOSUB75:RETURN

42 IFP=6THENX$(1)="0":X$(2)="0":X$(3)="0
"IX$(4)="0":ST$="0":JIF=1:CR=1:GOSUB75:RE
TURN

43 IFP=5THENK6=57.29577951308232:GOSUBSO
-RETURN

44 1FP<>ATHEN46

45 Y=VAL(X$(1))*(SIN(VAL(X$(2))/K6)) - X=V
AL(X$(1))*(COS(VAL(X$(2))7K6)) :X$(1)=STR

July 2005 - Bitchin100 Magazine — 1

$(X) 1 X$(2)=STR$(Y) : JF=1:GOSUB75:RETURN

46 1FP<>3THEN48
47 GOSUB82:JF=1:X$(1)=STR$(K6*(3.1415926
535898/2) - (VAL (X$(1)))) :GOSUB75:RETURN

48 1FP=2THENX$(1)=STR$(COS(VAL(X$(1))/K6
)) :JF=1:GOSUB75:RETURN

49 IFP=1THENX$(1)=STR$(LONVAL(X$(1))):JF
=1:GOSUB75:RETURN

50 IFP=0THENX$(1)=STR$(VAL(X$(1))"2) :JF=
1:GOSUB75:RETURN

51 LX$=X$(1): IFP=7THENX$(1)=""0":GOSUB75:
X$(1)=""":RETURN

52 IFP=6THENJF=1:ST$=X$(1) :GOSUB75:RETUR
N

53 IFP=5THENK6=1:GOSUB80:RETURN

54 1FP<>4THEN57

55 IFINSTR(L,X$(1),"."")=0THENRETURN

56 DP=INSTR(L,X$(1),".") :X$(1)=LEFTS(X$(
1) ,DP) : JF=1:GOSUB75:RETURN

57 IFP=3THENX$(1)=STR$(ATN(VAL(X$(1)))*K
6) : JF=1:GOSUB75:RETURN

58 IFP=2THENX$(1)=STR$(TAN(VAL(X$(1))/K6
) :JF=1:GOSUB75:RETURN

59 IFP=1THENX$(1)=STR$(LOG(VAL(X$(1)))):
JF=1:GOSUB75:RETURN

60 IFP=0THENX$(1)=STR$(SQR(VAL(X$(1)))):
JF=1:GOSUB75:RETURN

61 LX$=X$(1): IFP=7THENX$(1)=STR$(-VAL(X$
(1))) :GOSUB75:RETURN

62 IFP=6THENGOSUB79:JF=1:X$(1)=ST$:GOSUB
75:RETURN

63 IFP=5THENX$(1)=X$(2) : GOSUB78:GOSUB75:
JF=1:RETURN

64 IFP<>4THENG7

65 IFINSTR(L,X$(1),".")=0THENRETURN

66 DP=LEN(X$(1))-INSTR(L,X$(1),"."):X$(1
)=RIGHT$(X$(1) ,DP+1) : JF=1:GOSUB75:RETURN

67 IFP=3THENFX=INT(VAL(X$(1))) : IFFX<OORF
X>14THENFX=5: RETURNELSEX$(1)=X$(2) : GOSUB
78:GOSUB75:JF=1:RETURN

68 IFP=2THENJF=1:GOSUB79:X$(1)="3.141592
6535898 : GOSUB75: RETURN

69 IFP=1THENX$(1)=STR$(2.7182818284590"V
AL(X$(1))) :JF=1:GOSUB75:RETURN

70 1FP=0THENJF=1:X$(1)=STR$(VAL(X$(2))"V
AL(X$(1))) :GOSUB78:GOSUB75:RETURN

71 LX$=X$(1) 1 IF=1:X$(1)=STRS(VAL(X$(2))+
VAL(X$(1))) :GOSUB78:GOTO75

72 LX$=X$(1) 1 JF=1:X$(1)=STRS(VAL(X$(2))-
VAL(X$(1))) :GOSUB78:GOTO75

1 — Bitchin100 Magazine - July 2005

73 LX$=X$(1) 1 IF=1:X$(1)=STRS(VAL(X$(2))*
VAL(X$(1))) :GOSUB78:GOTO75

74 LX$=X$(1) : IF=1:X$(1)=STR$(VAL(X$(2))/
VAL(X$(1))) :GOSUB78:GOTO75

75 PV=VAL('0."+STRING$(FX,"0"")+"5"") :BA=V
ALC"1"+STRINGS(FX,"0")) :FORI=1TO4:PRINT®
(1+1)*40+19, STRING$(20," ") 1 IFX$(1)="-"0
RX$(1)=""_"THEN77

76 XX=VAL(X$(1)) : XX=FIX((XX+PV*SGN(XX))*
BA)/BA:X$(1)=STR$(XX)

77 PRINT@(1+1)*40+19,X$(1) :NEXTI: IFER=1T
HENER=0:RETURNELSERETURN

78 IFER=1THENER=0:RETURNELSEX$(2)=X$(3):
X$(3)=X$(4) :RETURN

79 IFER=1THENER=0:RETURNELSEX$(4)=X$(3):
X$(3)=X$(2) :X$(2)=X$(1) :RETURN

80 IFK6=1THENK$(6)=""Istx deg RAD del"E
LSEK$(6)="Istx DEG rad del

81 PRINT@5*40,E$+K$(6)+F$-RETURN

82 X$(1)=STR$(2*ATN(VAL(X$(1))/ (1+SQR(AB
S(1-VAL(X$(1))"2))))*K6) :RETURN

83 BEEP:PRINT@99, ""ERROR" :ER=1:RESUMENEXT

Your Ad Here!

The vintage community is made up
solely of enthusiasts like you. There are
no megabucks to be made in this
market.

Yet some of you put in extra effort to
bring products to the market, either for
free use, or for sale at a reasonable
price. Please support the advertisers in
Bitchin100, as well as considering
bringing your own new products and
services to the attention of the
community.

Currently, advertising in Bitchin100 is
FREE of charge, but ad placements are
allowed at the sole discretion of the
editor. We're pretty open though so
don't self-censor. Ask!

Please contact us about advertising
your retro laptop related product
service, web site, even one off
equipment for sale or loan:

jhoger@pobox.com

8085 Instruction Mnemonic Meanings

Data Transfer Group Logical Group Branch Group
Instruction 733m303_n Meaning Tu_mmm Instruction 733m303_n Meaning fu_mmm Instruction Mnemonic Meaning Tu_mmm
Zf | Cf| Pf | Sf zf| cf| Pf| sf zf | cf | Pf|sf
MOV |dreg, sreg |[MOVe CMP |reg |CoMPare X | X X|X JMP label |JuMP unconditional
MVI reg, byte |MoVe Immediate CPl | byte |[ComPare Immediate X | X X|X JZ label |Jump if Zero
MVX | drp, srp _N_o<w eXtended-register (pseudo CMA CoMplement Accumulator JNZ label |Jump if No Zero
or high & low MOVSs) I CMC CoMplement Carry X JP label |Jump if Positive
LXI rp, word |Load eXtended-register Immediate STC SeT Carry 1 ™ label Jump if Minus
XCHG eXCHanGe hl with de SHLR Shift HL Right X IC label |Jump if Carry
LDA |addr LoaD Accumulator direct ANA |reg |ANd Accumulator x 0 x| x| [NC label Jump if No Carry
STA |addr STore Accumulator direct ANl |byte |ANd Immediate x| 0/ x| x| JTM |label |Jump if True sign Minus
LDAX |B _mw”_nw:MMMmﬂBmm__MnnMﬁ _mﬂa_ﬂmnn via ORA |reg |OR >nnc3F.__m81 X |0 x|x JTP label |Jump q ._.E.m sign Positive
Store Accumulator indirect via ORI | byte |OR Immediate X |0 x|x JPE label |Jump if Parity Even
STAX B eXtended-register Bc XRA |reg |eXclusive oR Accumulator x| 0 x|x JPO label |Jump if Parity Odd
LoaD Accumulator indirect via XRI byte |eXclusive oR Immediate x| 0| x|x CALL |label |CALL unconditioanl
LDAX |D eXtended-register De RAL Rotate Accumulator Left through carry X cz label
STAX D wwwmﬂ%m”mcﬂﬁc._mnoﬂ indirect via RAR Rotate Accumulator Right through carry X CNz label
-register De RLC Rotate accumulator Left Circular X CP label
LHLD |addr Load HL Direct RRC Rotate accumulator Right Circular X CM label
SHLD |addr Store HL _u_ﬂ.mnn - RDEL Rotate DE Left through carry x| Ccc label |Call if Carry
LHLI _mmm_m L Indirect via extended . CNC |label Call if No Carry
SHU Store HL Indirect via extended Stack, Input/Output, & Machine Control Group CPE label |Cal
register de Instruction 733m303_n Meaning Tu_mmm CPO |label |Call if Parity Odd
Zf | Cf | Pf | S RET RETurn unconditional
Arithmetic Group PUSH |rp PUSH on stack RZ Return if Zero
Instruction 733m303_n Meaning Flags POP |rp POP off stack RNZ Return if No Zero
Zf | Cf| Pf|Sf| |SPHL Stack Pointer from HL RP Return if Positive
ADD reg |ADD X | x| x|x XTHL eXchange Top of stack with HL RM Return if Minus
ADI byte |ADd Immediate x| x|x|x| |IN port | INput from port RC Return if Carry
ADC reg |ADd with Carry x| x| x| x| |OUT |port |OUTput to port RNC Return if No Carry
ACI byte |Add with Carry Immediate x|x|x|x| |DI Disable Interrupts RPE Return if Parity Even
SUB reg |SUBtract x| x| x| x El Enable Interrupts RPO Return if Parity Odd
SUl |byte |SUbtract Immediate x| x|x|x| [RIM Read Interrupt Mask PCHL Program Counter from HL
SBB reg |SuBtract with Borrow X | X |[x|x SIM Set Interrupt Mask RST n ReSTart
SBI byte |Subtract with Borrow Immediate x| x| x|x NOP No OPeration RSTV ReSTart if oVerflow
DAA Decimal Adjust Accumulator X[x|x|x HLT HalT
INR reg |INcrement Register X X | X
INX rp INcrement eXtended-register
DCR reg |DeCrement Register X X | X
DCX rp DeCrement eXtended-register
DAD _[rp |Dual-register ADd to hi X 8085 Instruction Set Reference
HLMBC HL Minus BC X| x| h|x 003_0__ma Uv\ xo: S_QMQD
DEHL |byte |DE from HL plus byte
DESP | byte |DE from SP plus byte

Ron has compiled a thorough reference to the full
instruction set of the 8085 CPU used in the Model T laptops.
Every 8085 assembly programmer should keep it in arm's reach

8x8=>Dd ‘T+Jd=>

[dSIM ‘2-dS=>dS Uayl T=4A0 } ALSY 91Aq+dS=>3a 2Aq| ds3a
J10ssad04d G808 ey 1TH [03 0 SI Uaiaym 31Aq+71H=>3a| 349 1H3Q
BuiIou op JON 8xU=>Dd ‘T+Dd=>[dSIM ‘z-ds=>ds ~ 1SY
: H=>2d Toal XLMX X 29-TH=>TH J9WTH
y=aAsew dne IS Z+dS=>dS ‘[dSIM=>Dd UdY) 0=4d J! OdY x di+iH=>H| di dva
Jsew ydnudjui=>y Wid H . ;H " H _ 1-di=>di| di] xda
sydnusiul ajqeus 13 N+n_man_m .Eﬂ Hvun_ wr_u HHDE x 3 X 1-6au=>6a1| Bas wWdQ
sydnuiajul 9|gesip 1a NHn_mIVn_m .”n_m“BIVUn_ “wr_u 0= uF” ONY T+di=>di dui XNI
=> => =
y=>uo0d 03 ejep uod| 1n0 4 n_ml ds - ds P 2d cwr_u ._”IUFU UJ o X | X X T+6ai=>601| Bas UNI
od woyy eyep=>y| wod NI ¢rdS=>ds .Eﬂ =>0d US TS 4 Wy < x| x| x 1xau 03 ALed
TH=>[dSIM B1IUM [dSIM=>TH THIX Z+dS=>dS ‘[dSIM=>Dd Uy} 0=4S JI dy ‘94 UBYY 6< JI ‘bY" LY PUB OV EY Ul vva
H=>dS R4S Z+dS=>dS ‘[dSIM=>Dd Uy} 0=4Z J! ZNY| [x [x [x| x -oMhg-y=>y| 214q s
Z+ds=>ds ‘[dsim=>di| di dod ¢+dS=>dS 'dSIM=>Dd Uat 1=47 J 24 Ix x|x|x p-bory=>y| Bai ags
di=>[dSIM ‘Z-dS=>ds| di| HSNd ¢+dS=>dS [dSIM=>dd 139 x| x| x aUhqv=>v| ?ka Ins
[3ge|=>2d ‘€+2d=> oy = 6
age X| x| x|x 2I-y=>y| bBal ans
RECNE AL [dSIM ‘Z-dS=>ds Uayi o=y y1 9% Odd
mmm_u_i Bulueap u_coEwci uoiPNIIsy| SeI=>0d ‘E13d=> X | x|x|x 10+31hg+y=>V| 31hq (o)
dnouo jo3u0) aulysew § NAINOANAU] YIeIS [dSIM ‘z-dS=>ds usu3 T=yd 41 1291 FdI] I x x| x| x $+baity=>y bai oav
139e|=>2d ‘€E+2d=> oo Sy X | X |x|Xx ANhg+v=>y| 31hq 1av
1D=>0030d 2IIyMm [dSIM ‘2-dS=>dS uayl 0=4D I X | X[X|x bai+y=>y| b6as aav
X $13a=>J0 PI3YM Z:3a=>3a 13ad 2981=>d ‘€+Dd=> 0o ol [I5]3d 04z
X ov=>JD Hy [dSIM "Z-dS=>dS USW3 T=40 4! sbej4 Buiuespy u_coEwci uoI1oNAISU|
pue QV=>/V d)lym TV LV=>0V"9V 13geI=>0d ‘€+2d=> oo o dn
IV=>1D [dSIM ‘Z-dS=>dS ua3 T=4S JI 019 Jnswyly
* | [pue Ly=>0v a1um 0V 9v=>Tv" LV oH 8QeI=>Dd ‘€+2d=> oo o
D=>1V [dSIM ‘Z-dS=>dS Uyl 0=4S JI IH=>[3aIm IMHS
X
BIIUM OV =>10 I2UM Z/y=>V v 12GRI=>Dd ‘E+2d=> | goo o [3aIM=>TH nH
N D=>0v . [dSIM "2-dS=>dS UdW3 0=4Z 1 TH=>[ppelm| Jppe| A1HsS
BUM LV=>J] BIBYM Z4V=>Y o -_omgum_vumww m+uun_uv_ 12qe| o) [ppelm=>1H Jppe| aiH1
x| x 0| x 21Aq WO PAISNPX3 V=>Y| 2MUq [uX dSIM '¢:dS=>dS USW T=4Z) v=>[3ala al xvis
X X 0 X Hau YO SAISNIX3 Y=>VY Hau VHX 199e|=>2d ‘€+2d=>[dSIm ‘Z-dS=>dS| |99e| 1IvD
! 590 =>4 Uoth 0=1a 11| 1oae ; [3ala=>v al xval
X | X 0] X 91AQ YO aAIsNpuUl Y=>Y| 934Aq Te) 199e|=>2d U3yl 0=4d }!| [3qe] Od —>Dal
aqe|=>Dd Uyl T=4d #I| [3qe| 3d[v=>1o8lq 8] Xv1S
X | X 0] X 631 YO SAISNPU| Y=>Y b6al| wHO | : Dalg=>
- [9ge|=>Dd Uay1 0=JSL 41| [aqe|| dif ogla=>v 8] xvai
X | x| 0|X g anvv=>v| =kq INV - - v=>Lppelq ippe VIS
x| x o]l x 6ol ANV v=>v| Bo1| VNV [3ge|=>Dd Uay3 T=4SL 4 [9qe| WLI s
— = [ippelg=>v Jppe| vai
01=>J) pue (ubis m [9ge|=>2d Uay3 0=40 41| 199e] ONI =530 SIlum 30=>1H oHoX
X pUSIX3) ZH=>9H 3IIUM Z/TH=>TH YH loqe|=>0d UaWy T=)0 §I| Ieqe] Of :
piom=>di| piom ‘di X1
1 1=>0 1S [oge|=>2d uayl T=JS JI| [3qe| WI Srom
x 42 40 JuBWRIdWOd 5,T=>0 oWD I3qe|=>Dd U3 0=4S 4! [3qel df MO| 9 YbIY 1oy opnasd) dis=>dap| S ‘UUP| XAW
V JO Judwd|dwod s, T=>Y VYIND [9ge|=>Dd Uay3y 0=4Z §!| 13qe| ZN[21kq=>6a1 234q ‘6l 1AW
X | X | x| X 9Mhg-v=>1 ¥Mq 1dD [9ge|=>Dd Uay3 T=4Z §I| [3qe| z[5 5 BoJs
X | X | X | X bal-y=>]1 b6ai| dWD 1aqe|=>2d| [29e| dINT 9is=>ba.p ‘6aup AOW
IR 1S id |10z 1S Md |10z
mmm_u_i Bulueapw u_coEwci uonPNAsU| sbe|4 Buluespy u_coEwci uonPNAsU| mmm_u_i Buiuespy u_coEwci uonPNAsU|
dnouo |es1bo7 dnouo youeug dnouo usjsuel] eyeqg

dnoup jeuondung Aq suoildy uoidnIIsuj| G808

8085 Instructions by Mnemonic

Instruction 733m303_n Meaning Flags Instruction 733m303_n Meaning Flags Instruction 733m303_n Meaning Flags
Zf | Cf | Pf | Sf Zf | Cf | Pf | S Zf | Cf Pf|Sf
ACI byte |Add with Carry Immediate X | X |X|X JTP label Jump if True sign Positive SBI byte Subtract with Borrow Immediate X | X | X|X
ADC [reg ADd with Carry X | X |X|X 14 label Jump if Zero SHLD |addr Store HL Direct
ADD |reg ADD X | X | X|X LDA |addr LoaD Accumulator direct SHLI Store HL Indirect via extended
ADI |byte |ADd Immediate X | x| X|x| | pax B LoaD Accumulator indirect via register de
ANA [reg |ANd Accumulator x|0|x]|x eXtended-register Bc SHLR Shift HL Right X
ANI byte |ANd Immediate x| 0| x|x LDAX |D MW%.%:WMM&HMWMMVH __u_.,%_ﬂmnn via SIM Set Interrupt Mask
CALL |label |CALL unconditioanl TAiD ladd Load HL Direct SPHL Stack Pointer from HL
cc label |Call if Carry addr oa Irec STA |addr STore Accumulator direct
—— Load HL Indirect via extended PR :
CM |label |Call if Minus LHU register de STAX B WMM ﬂ%ﬁm_w%ﬁmeag via
CMA CoMplement Accumulator LXI |rp, word |Load eXtended-register Inmediate Store Accumulator indirect via
cMmC CoMplement Carry X mov 199 IMove STAX 1D eXtended-register De
CMP |reg CoMPare X | X |X|X sreg STC SeT Carry 1
CNC |label |Call if No Carry MVI reg, byte |MoVe Immediate SUB |reg SUBtract x| x x| x
CNZ |label if No Zero MVX |drp, srp Rmﬂmﬁm_vwﬁshmﬂ_\.mﬂvmm_mnmﬂ (pseudo for sul byte SUbtract Immediate x| x| x
CP_ |label if Positive . XCHG eXCHanGe hl with de
CPE |label |Call if Parity Even NOP No OPeration .
Yy XRA |reg eXclusive oR Accumulator x| 0| x|x
CPI byt ComP | diat ORA reg OR Accumulator X [0 x|Xx
yte |tomPare Immediate XX x| X . XRl |byte eXclusive oR Immediate x| 0| x|x
CPO llabel |Call if Parity Odd ORI byte OR Immediate X [0 x|Xx
abe all IT Farity OUT oot OUTout to bort XTHL eXchange Top of stack with HL
CZ |[label |callif Zero p puttop
DAA Decimal Adjust Accumulator X | X |X|X PCHL Program Counter from HL
DAD |rp Dual-register ADd to hl X POP_rp POP off stack
DCR reg DeCrement Register X X | X PUSH rp PUSH on stack
DCX |rp DeCrement eXtended-register RAL MM_mwvwm Accumulator Left through X
DEHL |byte |DE from HL plus byte RAR Rotate Accumulator Right through
DESP |byte |DE from SP plus byte carry X
DI Disable Interrupts RC Return if Carry
El Enable Interrupts RDEL Rotate DE Left through carry X
M__._sm HL Minus BC x| x!nlx!| [RET RETurn unconditional
RIM Read Interrupt Mask
HLT HaLT RLC Rotate accumulator Left Circular X
IN port INput from port RM Return if Minus
INR reg INcrement Register X X | X RNC Return if No Carry
INX rp INcrement eXtended-register RNZ Return if No Zero
JC label |Jump q nwﬂa\ RP Return if Positive
M label |Jump if Minus RPE Return if Parity Even
JMP label |JuMP unconditional RPO Return if Parity Odd
INC label |jump if No Carry RRC Rotate accumulator Right Circular X
JNZ label |Jump if No Zero RST 'n ReSTart
JP label |Jump if Positive RSTV ReSTart if overflow
JPE label |Jump if Parity Even RZ Return if Zero
JPO label _|jump q Parity .Oaa - SBB reg SuBtract with Borrow X[X | X |X
/™ label [jump if True sign Minus SBI byte Subtract with Borrow Immediate X | X|Xx|Xx

01 914Aq snid ds wou 3a 91Aq| ds3a
01 914Aq snid TH woy 3@ 91Aq| TH3A
0t 24 SNUIN TH J9WTH
01 Iy 03 pay J31sibal-jeng di| ava
90 1331s1624-papualxa Juswaldag di XJda
90+ 0 19315169y Juawaldag 634 ¥oa
90 193151691-papualxd JUSWAIDN| di XNI
90+ 0 19315169y JusWBIDN| 634 UNI
(<4} 17eH 17TH 0 Joje|nwnddy Isnipy |ewidsq vva
0 uollessdo oN dON L0 Sjelpawiw| mouog yiim jpenqns 214q 195
90+ 90 MO[LIBAO }I Ye]Say ALSY |0 Jsep 1dnuiaiu) 39S Wis| |€0+ ¥0 MO.10g Ylm pengns 634 ags
4 yelsay u 1SY |40 dse 1dnuiajul peay Wid| L0 9jelpawuw] 1oenqns 91Aq NS
90 TH woly 133uno) weiboud THOd| [p0 sydnuisju| ajgeus 13| |€0+ 0 Pendns Bais| dans
90+ 90 PPO Ajlied J1 uinydy odd| [p0 sidnuiau| sjqesia 1al Lo Sjeipawwi Aie) yym ppy 31Aq 1oV
90+ 90 uaAg Ajuied 41 uiniy 3dd| [oT wod oyIndino| wod| 1no| |€0+ +O Aa1ed yum pay Bas| dav
90+ 90 AuieD oN 41 uiniay ONY| (o1 wod wouyndNi| pod NIl L0 sjelpaww| pay 91Aq av
90+ 90 Auied 41 uinay M| o1 TH yum >pess jo doy abueysxa THIX| €0+ 0 aav 621 aav
90+ 90 SNUI JI uIniay Wd| |90 TH Wouy 193ul0d >oe1s JHdS| [SePAD Bujues|y duowaup uoidnaysu|
90+ 90 SAI3ISOd J1 UIN3dY dd| [oT 2235 1O dOd di| dod| |WW+ IS UOIIPUOD IO
90+ 90 0197 ON J UINIRY ZNY| [z1 3P€15 U0 HSNd a1l Hsnd 03 POAJOAUI [J93SIB3I+ S9IDAD |enuass3
90+ 90 0497 JI uinay Z4 |s9ph) Bujuespy dJluowaup uoIdNIISU| dnouo Jnswyily
0t [euorjpuoduUN wIN 3y 134 W+ I3 UoRIpUOd
60+ 60 ppO Aued i 1ed| 1sge)| odd |03 10 P3A|OAUL N 43351631+ S3[DAD [eruassy ap
60+ 60 uan3 Ajued yt11ed| 19qel| 3dd dnous jo.13u07) suiydepw ® ndinoandu; yeys (0L 19351031 papUEI® BIA 393U1pUl TH 21035 MHS
60+ 60 AuedoNjiied 1egel OND 0T 1935161 PEPUSIX® BIA 1BIPU TH _omwm_ 1
60+ 60 Aued y1jjed| |9qe) 20 |0t Aa1ed ybnouyl Yo 3@ 3e10y RECLINPY: 199110 H 91015 oPe| dIHS
60+ 60 SNUIN 41 (1D |3qe| WD| |v0 Je[naui) ybry Jojenwindde 3330y oud| gy 19910 H peo epel a
60+ 60 SAI}ISOd J1 [IeD| [3q¢] dd |v0 JenaJi) Y37 J03e|NWINdde 33e30y o 5Q 19151691-papUBIXD
60+ 60 o19Z ONJI[1BD [39el| ZND| |0 Au1ed ybnoayy 3ybry JojeiNWnddY 31e10y uvy| |£0 BIA 19911PUI JOIR[NWINDDY D101S aj Xvis
60+ 60 0J3Z J1 [|eD |3qe| Zd %0 Au1ed ybnoay3 37 Joje|nwnddy 93e30y ™ aq Ja1siBal-papuaixa al xval
81 [euoipuodun TIvD 19qel| TIvVD| (L0 ajelpawWW| Yo dAISNPX3| 831Aq| [UX BIA 323J1pul Joje|nwinddY geo
€0+ £0 PPO Aaued s dwnf| j3ge| odl €0+ +0 J0je|INWN2dY YO BAISNPXS| Bal| wuX| |4 28 1935163.1-p3pURIX3 al xvis
BIA J2311pul JO3e|NWNIJY 910315
€0+ L0 UaA3 Ajued yi dwnf |3ge| adll |20 Sjelpawwi ¥O| gl MO 5§ 19151651 pAPUIXD
€0+ L0 9AIISOd ubis anul 41 dwnf| |aqe| difl |€0+ 0 1oje|nwnidy Yo Bai| wyo| |[LO BIA 131pUI J03R|NWINIIY qeoT a| Xvail
€0+ LO snuiy ubis aniy ji dwnf |aqel| WLl |£0 djelpawiw| pNY| 33ka| INV| [102J1p J038|NWINJDY 3J0LS ippel vis
€0+ LO Aued oN yidwnf| 2gej| DNl |€0+ +0 J103e|NWINDY PNV 631 VNV, |7 102JIp J03R|NWINDY qeoq wppel val
€0+ L0 Auted yidwnfl j3qe| of |20 461 TH BIUS YIHS| (39 3p YIM |4 9DUBHIXD SHOX
€0+ L0 SnuiW 4 dwn(| 3qe| Wl |0 Auie) 19s 21S| for S1eipaww] Ja3si6al-papusixe peo| piom ‘di X1
€0+ L0 aAnIsod 4 dwn(| aqe dll |vo Aused yuswsidiwod W [(SAOW MOI S UBIU| 4o yrm
€0+ L0 0497 ON 4 dwn[[3qge| ZN[l |v0 Joje|nwinddy Jusawa|dnod YIND 104 opnasd) J33s1691-papualxd A0
€0+ L0 0497 y1 dwn[[3ge| z[l |0 Sjeipawwi dedwod| 31Aq Idd| |€0+ L0 Sjeipawiw| SAOW| 3Aq ‘Bas INW
0t [euoryipuodun dwnf [9ge|| dWl |€0+ ¥0 SJediN0D Ba1| dWD| |€0+ ¥0 SAOW| Bais ‘6aip| AOW
s9I2AD Bujues|y dluowaup uoldNISuUl [S9DAD Bujueap] dluowWBU N uol3dniIsu| s92AD Bujueap] dluowWBU N uol3dNIIsu|
W+ 19 uonIpUOd W+ IS UonIpPUOd W+ IS UOIIPUOD IO
03 10 PAAJOAUL N 139351631+ S9IDAD [eruassy 03 10 P3A|OAUL N 43351631+ S3[DAD [eruassy 03 panjoAul |y J93s1B631+ S31DAD |enuassy
dnouo youeug dnouo |es1bo7 dnouo usjsuel] eyeqg

dnoun jeuoydung Aq s92A) aulysepn s808

8085 Instruction Mnemonics by Op-code

x0h x1lh x2h _ x3h x4h x5h x6h x7h x8h x9h XAh xBh xCh xDh XEh xFh
00h-OFh [NOP LXI B,w STAX B INX B INR B DCR B MVI B,b RLC HLMBC DAD B LDAX B DCX B INR C DCR C MVIC,b RRC
10h-1Fh |SHLR LXI D,w STAX D INX D INR D DCR D MVID,b RAL RDEL DAD D LDAX D DCX D INR E DCR E MVI E,b RAR
20h-2Fh |RIM LXI Hw SHLD INX H INR H DCR H MVI H,b DAA DEHL b DAD H LHLD DCX H INR L DCR L MVIL,b CMA
30h-3Fh |SIM LXI SP,w STA @ INX SP INR M DCR M MVI M,b STC DESP b DAD SP LDA @ DCX SP INR A DCR A MVI Ab CMC
40h-4Fh |MOV B,B MoV B,C MOV B,D MOV B,E MOVBH MOVB,L MOVBM 'MOVBA MOVCB |MOVCC MOVCD |MOVC,E MOVCH MOVCL |MOVCM MOVCA
50h-5Fh |MOV D,B MOV D,C MOV D,D MOV D,E MOVDH MOVDL MOVDM |MOVDA | MOVEB MOVE,C MOVED MOVEE MOVEH |MOVEL |MOVEM MOVEA
60h-6Fh |MOV H,B MOV H,C MOV H,D MoV H,E MOVHH MOVH,L MoV HM |MOVHA MOVLB MOV L,C MoV LD |MOVL,E MOV L,H MOV L,L MOV LM MOVLA
70h-7Fh |MOV M,B MOV M,C MOV M,D MOV M,E MOVMH MOVM,L |HLT MOV M,A MOV AB MOVAC MOVAD MOVAE MOVAH |MOVAL |MOVAM MOVAA
80h-8Fh |ADD B ADD C ADD D ADD E ADD H ADD L ADD M ADD A ADC B ADC C ADC D ADCE ADC H ADC L ADC M ADC A
90h-9Fh |SUB B SUB C SUB D SUB E SUB H SUB L SUB M SUB A ANA B ANA C ANA D ANA E ANA H ANA L ANA M ANA A
AOh-AFh |ANA B ANA C ANA D ANA E ANA H ANA L ANA M ANA A XRA B XRA C XRA D XRAE XRA H XRA L XRA M XRA A
BOh-BFh |ORA B ORA C ORA D ORAE ORA H ORA L ORA M ORA A CMP B CMP C CMP D CMP E CMP H CMP L CMP M CMP A
COh-CFh |RNZ POP B INZ @ .__<=v @ CNZ @ PUSH B |ADIb RST 0 RZ RET ._N @ RSTV CZ@ CALL @ ACl b RST 1
DOh-DFh |RNC POP D IJNC @ OUT port |CNC @ PUSH D SUl b RST 2 RC SHLI JIC@ IN port CC@ JTP @ SBl b RST 3
EOh-EFh |RPO POP H JPO @ XTHL CPO @ PUSH H ANI b RST 4 RPE PCHL JPE @ XCHG CPE @ LHLI XRI b RST 5
FOh-FFh |RP POPPSW [P @ DI CP @ PUSH PSW ORI b RST 6 RM SPHL M@ El CM @ JTM @ CPl b RST 7

