CHAPTER 11

Specifications of the PC-8401A Fioppy Disk Driver

NEC Corporation
Copyright © 1984 by NEC Corporation
All Rights Reserved

111

SECTION 1
OVERVIEW

DISK UNIT SUPPORTED BY FLOPPY DRIVER

The PC-8401 floppy disk driver supports the PC-8431A 3.5 inch floppy disk unit. Each of the two drives
within provides for disk storage on an 80 track disk.

MEDIA FORMAT

The PC-8401 floppy disk driver uses the following physical disk format:
ftern 8431A
Byte/Sector 256
Sector/Track 16
Track/Surface 80
Surface/Media 1

The CP/M format floppy disk is formatted in this way:

Block size 2048 bytes
Disk size 152 blocks
Directory entries 128
System tracks 2
The CP/M disk parameters are:

SPT 64

BLS 4

BLM 15

EXM 1

DSM 151

DRM 127

ALLO 0COH

ALL1 000H

CKS 32

OFF 2

The PC-8401 CP/M does not use system tracks, even though two tracks are allocated as system tracks.
This is to keep compatibility with the PC-8801A CP/M disk format (as used by the PC80312.DRV driver.)
Also, future implementations of the 3.5 inch CP/M disks may require system tracks. Keeping the 35 inch
disk logically compatible with current 5 inch disks simplifies media conversion.

11-2

DRIVE NUMBER

The PC-8401 floppy disk driver uses an absolute (fixed) drive numbering scheme. The first drive is al-
ways specified as 0, and the second drive as 1. This is not the sama as the drive numbering convention
used in conventional BDOS calls. The floppy drive numbering in the PC-8401A BDOS calls depends
on its current CP/M mode. in the 32K mode, drive A: is always the built-in RAM disk, and the floppy
disk drives, if any, are assigned the name B: (drive code 2) and C: (drive code 3). In the 64K mode,
the floppy disk drives are named A: (drive code 1) and B: (drive code 2), when connected.

Application programs that use the PC-8401 floppy disk driver directly, rather than through BDOS calls,
should note the differences in the drive numbering scheme.

In order to know which mode the application program is running, the program can look at the flag byte
which is maintained by the PC-8401 bios and located at OF7BBH (This address is named ‘Cpmmode’).
The Least Significant Bit of this flag will be 0 if the application program is running in the 32K mode,
and 1 if running in the 84K mode.

Also note that floppy disk drives may not always be connected. To know how many drives are available,

read the byte Flpnum at OF7C1H. Flpnum=0 indicates that no floppy disk is available, and no floppy
disk driver functions should be used.

11-3

SECTION 2
FUNCTIONS

READ SECTORS
Name Fread

042H

Drive number {0 or 1)

Number of sectors to read (B <= 8)

Track number of 1st sector to read

Sector number of 1st sector o read

L. = Address where sector data are to be returned

Entry

H

ol

I

C
A
B8
D
E
H

Exit Cy set if YO error is detscted, or specified drive does not exist.

The Fread function reads one or more sectors inte the user buffer. Up to 8 sectors can
be read at a time. Only one track may be read (ie., track spanning on read is not supported
by this function call.) Track numbers should range from 0 to 79, and sector numbers range
from 1 to 16.

The Fread function performs a Block Read to improve disk 1O throughput. When Fread
is requested to read just one sector, this function actually reads 8 sectors. if there are less
than 8 sectors remaining on the track, this function will read from the specified sector to
the last sector on the track (whichever is smaller.) The data is read into the internal buffer
in the disk unit. The contents of the sector specified by DE is then passed to the user buffer.
if the specified sector has already been read into the block, Fread does not perform a physical
read, but instead gets the sector data from the internal buffer of the disk unit.

The data in the internal buffer is discarded in the following cases:
1. A Warm Boot occurs.

2. The Bios HOME call is made {Restore to track 0.)

3. A write operation to the floppy disk is performed.

4. A disk format operation is performed.

5. A Disk /O error occurs.

6. The next sector read request didn't come in 10 seconds. (This is just to stop the drive
motor because it keeps rotating while the sector data exists in the internal buffer)

WRITE SECTORS
Name Fwrite
Entry C = 043H
A = Drive number (0 or 1)
B = Number of sectors to write (B <= 8)
D = Track number of 1st sector to write
E = Sector number of 1st sector to write
HL = Address where sector data io be written is stored
Exit Cy set if /O error is detected, or specified drive does not exist.
The Fwrite function writes up to 8 sectors at a time. Only one track may be written (ie. track
spanning on write is not supported by this function call.) Track numbers should range from
0 to 79, and sector numbers will range from 1 o 16.
FORMAT MEDIA
Name Ffrmt
Entry C = 044H
E = Drive number (0 or 1}.
Exit Cy is set if an /O error occurs, or the specified drive does not exist.

The Format function performs physical formatting of the floppy disk. Note that ail sectors
are filled with OFFH, not OE5H.

11-5

CHAPTER 12

Technical Documentation for the PC-8431A

NEC Corporation
Copyright © 1984 by NEC Corporation
All Rights Reserved

1241

SECTION 1
GENERAL DESCRIPTION
The PC-8431A is a micro floppy disk system which has its own CPU and memory buffer. It communi-
cates with the PC-8401A host computer through a “3-wire handshake protocol”. Since the PC-8431A
is a stand-alone disk system, the host computer is free from the cumbersome control of a resident Flop-
py Disk Controller. The PC-8431A performs all the physical disk /O operations upon receipt of com-
mand instructions and optional arguments, from the host, which select the operations to be performed

by the PC-8431A,

The interchange protocol between the host and PC-8431A involves the specification of physical sectors
on the disk. Any other sophisticated file handling is done by the host computer under its program control.

SECTION 2
OPERATION MODE
The operation mode can be either Single Track or Double Track. In the Single Track mode, only reads
can be performed (the write operation is not supported.) Capacity for a Single Track mode disk is 150K

bytes per drive.

Data can be read from or written to a Double Track mode disk. Capacity for a Double Track mode disk
is 300K bytes per drive.

SECTION 3
COMMAND SUMMARY

INITIALIZE COMMAND

The Initialize command resets the uPD-765 Floppy Disk Controller, and recalibrates the heads in the
PC-8431A. No parameter is required for this command.

COMMAND FORMAT
< INITIALIZE >
00H

12-2

WRITE DATA COMMAND

The Write Data command writes blocks of data which are sent from the host computer following the
command. Each block has 256 bytes of data.

COMMAND FORMAT
<WRITE> <N> <DD> <TT> «<S88> <DATA>
01+ 1-8 01 0-79 1-16 XXXX

Where <N > is the number of biocks (1 to 8) to write that will follow this command as <DATA>, <DD >
is the drive number {0 to 1) of the disk to write upon, <TT > is the track number (0 to 79) of the disk,
and <85> is the sector number (1 to 16) that the write begins upon. The maximum number of blocks
that can be written by this command is 8. Data CANNOT be written across tracks, that is, <N> and
<85> must satisfy the following restriction:

<N> + <S8S> must be less than or equal to 17

EXAMPLE: To write 512 bytes (2 blocks} of data on the 5th and 6th sectors of track 10 on drive 0, issue
the following command and parameters;
O1H 02H 00H 0AH 05H <512 bytes of data>
<WRITE> <N> <DD> <TT> <85> < DATA >
Note that only Double Track mode disks may be written.

If an error is detected during the execution of a command which invokes disk /O cperation, the code
in the PC-8431A drive attempts to recover from the error by the repeating the I/O operation several times.

12-3

READ DATA COMMAND

The Read Data command is used to read data from the specified disk’s sectors into the buffer in PC-8431A.
Note that the read data command does not send the data to the host. Instead, the data is stored in
the butfer of the PC-8431A. The host must then issue the Send Data command after the compietion
of the Read Data command to get the data out of PC-8431A. By separating the read operation from
the send operation, the host system can utilize a read-ahead buffering technique to improve disk fle]
throughput.

COMMAND FORMAT
<READ> <N> <DD> <TT> <55>
Double Track 02H i-8 0-1 0-79 116
Single Track 02H 1-8 0-1 033 1-16

Where <N>, <DD>, <TT>, and <SS> are identical to the Write Data command parameters and
follow the same <N> + <SS> restriction. Note that if a Single Track mode disk is being read, the
maximum value for <TT> is 39.

SEND DATA COMMAND

This command requests the PC-8431A to transmit the contents of the read buffer containing the data
from the most recently executed Read Data command.

COMMAND FORMAT
< SEND >
03H

The length of data to be transmitted is <N > *256, where < N> is what was specified by the most
recently executed Read Data command.

The Send Data command should only be issued after the prior Read Data command was successfully

completed, otherwise the PC-8431A will hang up. The Send Resuit Status command should be invoked
to inform the host computer whether a command was successfully completed or not.

12-4

COPY COMMAND

The copy command copies data from specified source sectors to specified destination sectors.

COMMAND FORMAT

SOURCE DESTINATION
<COPY> <N> <DD> <TT> <85> <DD> <TT> <«S8S>
Double Track 04H 1-8 041 0-79 1-16 0-1 0-79 116
Single Track 04H 1-8 0-1 0-39 1-16 0-1 0-39 1-16

Where <N>, <DD>, <TT>, and <S5> are identical {o the Write Data and Read Data command
parameters and follow the same <N> + <8S> restriction. Note that if a Single Track mode disk is
being read, the maximum value for <TT> is 39.

FORMAT COMMAND

A new (factory fresh) diskette should be initialized using this command prior to its use as a data diskette.
The Format command writes sector 1Ds and gap lengths on the diskette, and fills all the sectors with OFFH.

COMMAND FORMAT
<FORMAT > <DD>
05H 0-1

Where <DD > specifies the drive number containing the diskette to be formatted.

12-b

SEND RESULT STATUS COMMAND

After every command which involves a read/write operation, the Send Result Status command should
be issued to find out whether the read/write command was successful. This command returns & one
byte result code which shows whether data is available or not and if an error occurred or not.

The current version of the disk /O code in the PC-8431A can accept a command only after the preced-
ing command has been completed.

COMMAND FORMAT
<SEND RESULT STATUS >
06H

Bit assignment in the result status byte
MSB LSB

7161514131210

A
T SET IF AN ERROR WAS DETECTED
SET IF DATA TO BE SENT TO PC-8341A IS AVAILABLE

There are several cases when an error is reported, and the Send Result Status command does not
give enough information for determination of the cause of the reported error. The tool provided for such

analysis, the Send FDC Resuit command, gives the host computer more detailed information about the
errors.

12-6

SEND DRIVE STATUS COMMAND

This command gives drive status information. The host computer can know, through use of this com-
mand, whether a drive is ready (on-line} or not.

COMMAND FORMAT
«<SEND DRIVE STATUS >
o7H

Bit assignment in the result status byte
MSB LSB

76| 5[4(3]211}0

T
SET iF DRIVE 0 IS READY (ON-LINE)
SET IF DRIVE 1 IS READY (ON-LINE})

The hardware of the PC-8431A has no check mechanism for sensing whether a drive is on-line at any
given time during it's operation. The status is only correctly returned after the disk drive head is recalibrated
upon receipt of the Initialize command.

127

SEND FDC RESULT COMMAND

The Send FDC Result command is used by the host computer to obtain more detailed information about
any error which was reported in response to the Read Result Status command. The Send FDC Result
command returns the last FDC command’s result status bytes.

Although the send FDC result command is designed mainly to analyze error conditions, it may be is-
sued even after a floppy disk controller has been successfully completed.

COMMAND FORMAT
<SEND FDC RESULT >
09H

The Send FDC Result command sends 7 result status bytes:

1st 2nd 3rd 4th 5th 6th 7th

S§T0 811 8T2 ¢ H R N
Where ST0, ST1 and ST2 are the three registers which store the status information after an FDC com-
mand has been executed, C is the cylinder (track) number, H is the head number as specified on the
disk's ID field, R is the record (sector) number that was read or written, N is the number of data bytes

written in the sector. These bytes are explained in more detail in the “uPD-765 SINGLE/DOUBLE DEN-
SITY FLOPPY DISK CONTROLLER" specification sheet, available from NEC Microcomputers, Inc.

MARGIN PARAMETER SET COMMAND

The Margin Parameter Set command sets the data signal’s window timing for the uPD765A Floppy Disk
Drive controller.

COMMAND FORMAT
< MARGIN PARAMETER SET > <DATA>
OAH OEH

This parameter is set by the ROM code of the PC-8431A unit. It must not be altered by an application
program, as it's value is already preset for proper read timing by the firmware. lis setting is dependent
upon the floppy disk drive specifications. If an application program alters the value, the FDD will mis-
read the floppy disk data. (The Read Data Window timing is normally attached to a Phase Locked Loop
at pin 22 of the uPD765 FDD.)

12-8

TRANSMIT 1D DATA

The Transmit {D Data command was designed into the PC-8431A interchange protocoi for future im-
plementation. Its purpose will be to provide data start addresses and volume numbers to the host com-
puter. Currently, the PC-8431A ignores this command and simply returns the byte OEFH to the host.

COMMAND FORMAT
< TRANSMIT 1D DATA >
0BH

The current implementation sends 0EFH to the host computer. Future implementations will return four
bytes:

<HA> <lA> <HV> <lV>
where <HA> and <L A> are the high and low addresses, and <HV> and <LV> are the high and
fow bytes of the data volume. This command will be issued when the host computer requires a signa-
ture byte.

DIRECT SEEK COMMAND

The Direct Seek command moves the head to (seeks) the specified track number on the disk.

COMMAND FORMAT
<SEEK> <DD> <TT>
Double Track OCH 0-1 0-79
Singte Track 0CH 0-1 0-39

DIRECT RECALIBRATE COMMAND

The Direct Recalibrate command recalibrates the head (restores the head to track 0.)

COMMAND FORMAT
<RECALIBRATE> <DD>
0DH 0-1

12-9

TEST MODE ON COMMAND

The Test Mode On command is used fo set the test mode on. This is provided for maintenance pur-
poses and should not be requested by application programs. Standard application programs require
the automatic retry that is built into the interface protocol code. When the Test Mode is on, retries do
not occur. In the Test Mode, during a read or write operation, the interface protocol simply terminates
the operation when an error is detected.

COMMAND FORMAT
<TEST MODE ON >
0EH

TEST MODE OFF COMMAND

The Test Mode Off command is used to set the test mode off. The interface protocol will attempt auto-
matic retry and recovery of errors.

COMMAND FORMAT
<TEST MODE OFF >
OFH

FAST WRITE COMMAND

The Fast Write command is identical to the Write Data command described previously, except that the
Fast Write command uses the fast handshake protocol (two bytes per handshake cycle) to pass the
data bytes. The command byte and arguments are to be sent in the normal fashion. The same restric-
tions as in the Write Data command apply here.

COMMAND FORMAT
<FAST WRITE> <N> <DD> <TT> <SS8> <DATA>
011H 1-8 0-1 0-79 1-18B XXXX

12-10

FAST SEND COMMAND

The Fast Send command is identical to the Send command except that the Fast send command uses
the fast handshake protocol to send the data bytes to the host computer. The command byte and argu-
ments are to be sent in the normal fashion.

COMMAND FORMAT
<FAST SEND >
012H

SET OPERATION MODE COMMAND
The set operation mode command sets the operation mode, previously described.

In the single track mode, the read operation is supported, but write operations are not available. The
Write Data command, the Format command, the Copy command and the Fast Write command cannot
be used.

in the double track mode, all operations are supported.

COMMAND FORMAT
<SET OPERATION MODE > <SET BYTE>
017H 0-1

Bit assignment in the result status byte:
MSB LSB

7| 61 5] 4] 3|2]{1]0

n
RESET FOR SINGLE TRACK MODE
T

SET FOR DOUBLE TRACK MODE

12-11

SECTION 4
COMMAND CODE ASSIGNMENTS SUMMARY

INITIALIZE COMMAND 00H
WRITE DATA COMMAND O1H
READ DATA COMMAND 02H
SEND DATA COMMAND 03H
COPY COMMAND 04H
FORMAT COMMAND O5H
SEND RESULT STATUS COMMAND 06H
SEND DRIVE STATUS COMMAND 07H
SEND FDC COMMAND 09H
MARGIN PARAMETER SET COMMAND 0AH
TRANSMIT ID DATA OBH
DIRECT SEEK COMMAND OCH
DIRECT RECALIBRATE COMMAND ODH
TEST MODE ON COMMAND OEH
TEST MODE OFF COMMAND OFH
FAST WRITE COMMAND 011H
FAST SEND COMMAND 012H
SET OPERATION MODE COMMAND 017H

All values are in hexadecimal. If invalid command is given, the PC-8431A simply ignores it.

12-12

SECTION 5
THREE WIRE HANDSHAKE PROTOCOL

Data transfer between the host computer and the PC-8431A is performed by means of a three wire hand-
shake hardware protocol. This protocol is similar to the IEEE-488 handshake hardware protocol. In the
handshaking, three control linas are used; RFD (ready for data), DAV (data valid), and DAC (data accepted).

The RFD is set true by the receiver to tell the sender that it is ready to receive a new byte. The DAV
is set true by the sender when a new byte is put on the bus to inform the receiver that the data on the
hus is valid and the receiver may get the byte. The DAC is set true by the receiver when the data is
received from the data bus.

The DAV line should be held true until the receiver sets the DAC true. The receiver resets the DAC line
false as soon as the receiver discovers that the DAV Iine has gone false. From the receiver’s point of
view, one handshake cycle is complete when the DAV line went to false and the receiver reset the DAC
line in response. From the viewpoint of the sender, the handshake cycle ends when the sender disco-
vered that the DAC line was reset in response to the sender reseting the DAV line.

Another control line, ATN (attention), should be set by the host computer only when the command byte
is sent. It is reset when arguments or data bytes are sent. The ATN line is used to confirm the synchroni-
zation between the host computer and the PC-8431A. Through use of this line, sychronization is kept
in the case where the host computer aborts a command during the transmission of the command/argu-
ment/data string to the PC-8431A, or during the reception of the data/status bytes from the PC-8431A.
If such an abort should occur, by setting the ATN line true, the current process within the PC-8431A
is aborted, and the PC-8431A returns to the initial state of reception and interpretation of the new com-
mand byte.

Some example handshake routines are outlined below. An 8255 chip is used in the host computer to
physically connect it to the PC-8431A. The following routines assume that an 8255 is used.

1213

; SAMPLE PROGRAM FOR HANDSHAKE

;Bit assignment

MY__RFD EQUS5 :PC-8401A's RFD line is 5th bit
; in port C counting from 0

MY_DAV EQU 4

MY_DAC EQUGB

MY _ATN EQU 7

ITS__RFD EQU 00000010B :PC-8431A RFD line.
;This is the bit mask to pick
;up the bit out of port C.
ITS_DAY EQU 000000018
ITS_DAC EQU 000001008

PORTA EQU OFCH ‘Where we receive data byte

PORTB EQU OFDH :‘Where we send data byte

PORTC EQU OFEH Where we read or write control signals
Cw EQU OFFH :Command port of 8255

12-14

:Sender handshake routine for the host computer to send a command
:byte to the PC-8431A. The ATN line is set by this routine.

SHCMD:

PUSH AF
LD A,MY_ATN*2+1
OUT (CW),A

POP AF

:Save the command byte

:Set ATN line using the bit
:setfreset instruction of the 8255
;Recall the command byte
Then fall into the “SH” routine

:Sender handshake routine for host computer

This routine should be used to send an argument or data byte.
The command byte shouid be sent by the SHCMD routine above.
The data byte in [A] is sent to the PC-8431A.

SH:

NOTRDY:

NOTACP:

STLDAC:

PUSH AF
IN A,(PORTC)

AND ITS__RFD
JRZ NOTRDY

LD AMY_ AFN™2

OUT (CW),A
POP AF
OUT (PORTB).A

LD AMY__DAV*2+1
OUT (CW),A

IN A,(PORTC)
AND ITS__DAC
JRZ NOTAGP

LD A,MY__DAV*2
OUT (CW),A

IN A,(PORTC)
AND ITS__DAC

JRNZ STLDAC
RET

:Save data byte to be sent

:All control lines are connected
:in port C of the 8255

;See if the PC-8431A is ready
‘Wait for RFD to go high

It is now ready
:Reset ATN line

‘Recall data byte we will send
:Output data bus is on port B

:Set data valid true
:Use bit set/reset instruction of 8255

:See if it has received data

Wait if not

:it has received

:Reset MY__DAV line

Then see if it has reset the DAC line

:Stilf true, wait for the DAC to go false
;All done

12-15

;Receiver handshake routine

;Data byte sent from PC-8431A is received in [A]

s

AH:

NOTDAV:

STLDAV:

LD A,MY__RFD*2+1
OUT (CW),A

IN A,(PORTC)
AND ITS DAV
JRZ NOTDAV

LD AMY__RFD*2
OUT (CW),A

IN A, (PORTA)
PUSH AF

LD AMY__DAC*2+1
OUT (CW),A

IN A,(PORTC)
AND TS __DAV
JRNZ STLDAVY

LD A,MY__DAGC*2
OUT (CW),A

POP AF
RET

;Tell PC-8431A that 'm ready

;Wait for DAV line to go true

‘Now data on the bus is valid
;Reset my RFD soon

:Receive data byte through port A
‘Save it
TJell it that | have received data

Wait for DAV line to go false
;DAV is still true

;DAV is gone false, reset MY_DAC

;Handshake has completed

12-16

The operating mode of the 8255 should be fixed prior to the first handshake by sending the command
instruction 91H to the command port.

The fast handshake protocol is very similar to the normal handshake protocol described above. The
difference is that in the fast handshake protocol, two bytes are sent or received in one handshake cycle,
One byte is sent or received at the leading edge of the DAV line, while another byte is sent or received
at the trailing edge.

The two routines listed below, “FASTCH" and “FASTAH” are sample fast handshake routines. Note that
there is no fast handshake routine to send the command byte. As described in the previcus sections,
the command byte and arguments are always sent by using the normal handshake protocol. Only data
bytes are sent or received through the fast handshake routines.

1217

;Fast sender handshake routine

;Data bytes to be sent are expected to be stored in a buffer,
;with [HL] pointing to the 15t byte to be sent.

;0On exit, [HL] is incremented by 2

FASTSH:

NOTDAC:

DACTRUE:

IN A,(PORTC)
AND [TS__RFD
JRZ FASTSH

LD A (HL)

INC HL
OUT (PORTB),A

LD AMY__ DAV*2+1

OUT (CW),A
IN A(PORTC)

AND ITS DAC
JRZ NOTDAC

LD A,(HL)

INC HL
OUT (PORTB),A

LD AMY__DAV*2
OUT (CW),A

IN A, (PORTC)
AND ITS_ DAC

JRNZ DACTRUE
RET

Is PC-8431A is ready for new handshake?

:No, wait

;its ready. Pick up a data byte
;1o be sent

;Bump data pointer

;Qutput the byte on bus

Tell it that | put a data
;byte on bus

;Wait for it to say it's received
;the first byte

;It's received the first byte
;Let’s send the second byte

;Reset DAV to say that the
;second byte is now on the bus

Then wait for DAC to go false which
:indicates that the PC-8431A has
;received the second byte

;All done

12-18

;Fast receiver handshake routine

;Received two bytes are stored where [HL] points

;fo on entry
FASTAH:
LD AMY_RFD*2+1 Tell PC-8431A I'm ready
QuUT (CW),A
DAVLOW:
IN A,(PORTC) ;Wait for DAY to go true
AND ITS__DAV
JRZ DAVLOW
LD AMY__RFD*2 DAV is true, Tell it that I'm busy
QUT (CW),A
IN A {PCRTA) ;Receive the first byte
LD (HL),A ;Save it
INC HL
LD AMY_DAC*2+1 ;Set DAC true to tell it
OUT (CW),A ;| have received first byte
DAVHIGH:
IN A,(PORTC) Then wait for the send byte
:to be available
AND ITS_DAV
JRNZ DAVHIGH
IN A,(PORTA) ;DAV flipped again
:Now 2nd byte is available
LD (HL}A
INC HL

LD A MY__DAC*? ;Reset DAC {o say that
;! have received both bytes
OUT (CW),A

RET JAll done

1218

CHAPTER 13

Specifications of the MODEM7 Protocol in TELCOM

NEC Corporation
Copyright © 1984 by NEC Corporation
All Rights Reserved

1341

MODEM7 File Transfer Protocol

The following expresses the control flow for a file transfer using the MODEM?7 protocol. MODEM7 was
originally conceived and written by Ward Christensen. It was written as a tool for the transfer of CPIM
programs and data, from computer 1o computer through a “Null-Modem” cable or, by using 2 modem,
over telephone lines. The protocol provides reliable transfer, with error checking of sach 128 byte data
block sent, by utilizing a checksum.

The protocol impases no restrictions on the contents of the data being transmitted. No control charac-
ters are looked for in the 128 byte data messages. Absolutely any kind of data may be sent: binary,
ASCII, etc. The parameters used are: Ward length - 8 bits, Parity - none, Stop bits - 1. Any Baud rate
may be used with this protocol. The most common rates are 300, 1200, 2400 (and 9600 in a direct con-
nection configuration).

Those wishing to maintain compatibility of the CP/M file structure, i.e. to allow the transfer of ASCH| files
to or from CP/M systems, should follow this data format:

ASCII tabs used (09H); tabs set at 8 column intervals.

Lines terminated by CR/LF (0DH, 0AH)

End of file indicated by ~Z, 1AH. {one or more)

Data should be considered as a continuous stream of data bytes, broken into 128-byte chunks,
purely for the purpose of transmission.

If the data ends exactly on a 128-byte boundary, i.e. CR on byte # 127, and LF on byle # 128, a
subsequent sector containing the~Z EOF character(s) is preferred. Some utilities or user programs
cannot handle EQF without~Zs.

6. The last biock sent is no different from others., i.e. there is no “short block™

Sl

o

13-2

The following ASCHl codes are used to structure the protocol:

Start of Header <S0H> 01H

End of Transmission <EQT > 04H

Acknowledgement <ACK > 06H

Negative acknowledgement <NAK > 15H

Cancel <CAN> 18H
Transmitting

Each block of the transfer takes this format:
<80H> <BLK#> «<255-BLK#> «<--128 DATA BYTES--> <CKSUM >

in which:
<SO0H > Start of Header character.
<BLK#> Binary number, starts at 001 increments by 001, and wraps at OFFH back to OOO0H.

<255-BLK#> The complement of BLK#, ie. each bit in the 8-bit block number is complemented.
<CKSUM> The sum of the data bytes only. Any carries are ignored.
<CAN > is used for canceling the transmission.

All errors are retried 10 times. A message is typed after 10 retries asking the operator whether the pro-
gram should retry or quit.

The receiver has a 10-second timeout. It sends a < NAK > after each timeout. The receiver’s first < NAK>
signals the transmitter to start. The receiver must continue to timeout every 10 seconds in case the
sender isn't ready.

Once into receiving a block, the receiver goes into a one second timeout for each character and the
block-ending checksum. If the receiver wishes to <NAK> a block for any reason (invalid header, timeout
receiving data), it must wait for the line to clear.

Synchronizing

If a block number is received, it will be either;

1) The expected one, in which case everything is fine . . . or
2) A repeat of the previously received block. This should be considered as being okay. It only indi-
cates that the receiver’'s < ACK> became glitched, and the sender retransmitted . . . or

3) Any other block number, which indicates a fatal loss of synchronization, such as the rare case
of the sender getting a line glitch that looked like an <ACK:>. Abort the transmission, sending
a <CAN>.

13-3

Sending

While waiting for the receiver to send the initial < NAK > indicating transmission is to begin, the sender
has one very long timeout of about 45 seconds. Once in the sending protocol, the sender has a 10 sec-
ond timeout before it retrys.

When the sender has no more data, it sends an <EOT >, and awaits an < ACK >, resending the <ECT >
if it doesn’t get one.

Example
Here is a sample of the data flow, sending a 3-block message. It includes the two most commaon trans-

mission interruptions - a garbaged block, and an <ACK> reply getting garbaged. <XX > represents
the checksum byte.

SENDER RECEIVER
Timeout after 10 seconds,
— < NAK >
<SOH> 01 FE -DATA- <XX> -
o < ACK >
<SOH> 02 FD -DATA- < XX > - (DATA gets a line glitch)
- <NAK >
«<S0OH> 02 F -DATA- <XX> —
= < ACK>
<SOH> 03 FC -DATA <XX> -
{<ACK> gets garbaged) - < ACK >
<SOH> 03 FC -DATA- <XX> -
— < ACK >
<EQT > ~
- <ACK>

13-4

CHAPTER 14

Specifications of the ROM in the PC-8401A

NEC Corporation
Copyright © 1984 by NEC Corporation
All Rights Reserved

14-1

SECTION 1
OUTLINE

In the PC-8401, two different types of ROM are supported. The first is called Mapped ROM and the
second is called /O ROM. The Mapped ROM, addressed fram 00000H to 07FFFH, can be accessed
directly by the CPU when selected. (Memory management is discussed elsewhere in this manual.) On
the other hand, the I/O ROM cannot be accessed directly by the CPU, but only through /O {Input and
Qutput) instructions.

Multiple CP/M programs can be stored both in the Mapped ROM and in the I/O ROM. The names of
the programs in the ROMs always appear at the top of the Menu Screen, followed by the user applica-
tion files and data files in the selected file storage device. When Cold or Warm Boot occurs and the
Menu screen is displayed, the directory area in ROM is searched as part of the start-up routine. The
file names in ROM are obtained much like those in the file storage area in the RAM file and on the
Floppy Disk.

SECTION 2
NUMBER OF FILES IN ROM

There is no limit to the number of the files in any one ROM. However, there is a practical limit to the
total of the files in ail the ROMs due to the menu’s display format. Under no circumstances should the
total files in atl ROMs (i.e. BOMs #0, #1, #2, and the ROM Cartridge or 10 ROM Cartridge) exceed 65.
This limit is imposed because, if a default micro floppy drive disk contains 128 files and there exists
more than 65 files in the ROMs, a garbaged Menu display will result. (128 is the maximum number of
files on a micro floppy.)

14-2

SECTION 3
MAPPED ROM

Contients of the Mapped ROM

The bank-switching function of the menu program causes the currently selected Mapped ROM to be
physically addressable by the CPU, at addresses 00000H to 07FFFH. Therefore, any programs in a
Mapped ROM must be completely contained within that single Mapped ROM. Before performing the
actual bank-switching, the menu’s startup routine sets up the CP/M page zero information at memory
focations 08000H to 080FFH instead of at the usual area from 00000H te 00CFFH. The locations from
00000H to O0OFFH in the Mapped ROM are reserved by the PC-8400's CCP and BIOS. The first 64
(decimal) bytes are used for the System Interrupt Table, the BIOS and BDOS Jump Tables, the IOBYTE
and other system information. The following 192 bytes are used to store the Directory of the Mapped
ROM in a special format {0 be discussed:

07FFFH

Programs
00100H
000FFH

Directory for
ROM

00040H
0003FH System

Reserved

Area

Q0000H

The contents of the system area should be exactly as listed below. This data is the same as it is in ROM
#0 (the system ROM) except for the first 3 bytes:

Location Contents
(Hexadecimai)

00000H-00002H Jump instruction to the warm start entry
00003H-00003H Inte! standard IOBYTE. In the PC-8400, it should be 0.
00005H-00007H Jump instruction to BDOS

00008H-0003FH Interrupt locations 1 through 7.

14-3

Directory in the Mapped ROM
The Directory for the Mapped ROM consists of the file names stored on the ROM and their start ad-
dresses. Only .COM type files (CP/M executable files) are to be stored here. It is therefore unnecessary
to store the extension name, *“.COM”, after the filename. The system assumes it automatically. Instead,
it is suggested that the extension be filled with 3 blank characters. In this way, the ROM fields can
be distinguished from the RAM-disk and micro floppy disk files, which will have non-blank extensions.
Each filename in ROM is 14 bytes long. The end of the Directory is indicated by an empity file name (null).

Directory in the Mapped ROM

11 bytes Left justified filename field. (Unused bytes padded with spaces)

1 byte Separator (A null (0) should be inserted between the name and
the start address)

2 bytes Start address (Low - High order)

Example Contents of Directory Field in ROM
Address Contents

0040 57 53 20 20 20 20 20 20 20 20 20 00 00 O1
W 8
(File name “WS", start address is 00100H)

004E 43 41 4C 43 20 20 20 20 20 20 20 00 00 30
C A L C .. 0
(File name “CALC”, start address is 03000H)

005B 00 00 OC 00 CO 00 OO OC OO0 00 (0O 00 OO0 OO
A Null {End of directory)

An example dump of the entire page zero area of a typical ROM appears at the end of this section.

14-4

Execution of a Mapped ROM Program

Selection of the Mapped RCM filename is made by positioning the block cursor upon the directory dis-
piay of the chosen filename, while in the Menu mode. The return key is then pressed, causing the file-
name to appear (as if typed in) after the CP/M prompt. An argument to the filename (additional
parameters) may be typed at this point. A subsequent press of the return key will cause the execution
of the selected program, by changing the memory configuration and jumping to the address specified
in the directory in the ROM.

When a Mapped ROM is executed, the CP/M Page Zero area, which would under a normal CP/M im-
pternentation be in Read/Write Memory, is in Read Only Memory. The variable information, which would
normally be in Page Zero, is therefore transferred to the Read/Write Memory at locations 08000H to
080FFH, for use by the application program.

Location Contents
{Hexadecimal)

08003H IOBYTE

08004H ‘ Current default drive number {(0=A, 1=B,...)

0805CH-0807CH Default file conirol block produced for a transient pro-
gram by the CCP

0807DH-0807FH Optional default random record position

08080H-080FFH Default 128-byte disk buffer (also filled with the com-

mand line when a transient is loaded under the CCP.

Returning to menu

A Mapped ROM program must not use a RET command {C9H) o return to the CP/M Menu. Use JMP 0
(C3H Q0H COH, Jump Warm Boot) instead. if RET is used, the system might hang up.

14-5

SECTION 4
/O ROM

Contents of the I/O ROM

The /O ROM is used to store programs and data. It's memory map is identical to that of the Mapped
ROM, with the exception of the size of the ROM. This can be up to 256K Bytes, and consists of the
System Reserved Area, the Directory area and program/data area:

OxoxxxH
Program/
Data
00100H
O0QFFH
Directory for
ROM
00040H
0Q03FH
System
Reserved
Area
00000H

System Reserved Area

The 64 (decimal) bytes of System Reserved Area must be stored at locations 0000H to 0003FH in the
I/O ROM. The contents are identical to those used by the Mapped ROM and were described earlier.

1f an /O ROM does not have this System Reserved Area filled properly, the PC-8400 will ignore the
O ROM.
Directory Area

The contents of the directory area is identical to that of the Mapped ROM (refer to the previous descrip-
tion in this section of the manual, and the example dump at the end of this section.)

14-6

Execution of an I/G ROM Program

Execution of an /O ROM program is unlike execution of a Mapped ROM program. The Mapped ROM,
as previously described, is switched by the Menu program memory management into the first 32K of
CPU addressable memory. The /O ROM program, however, does not become part of the addressable
memory. It is more analogous to execution of a program from the RAM-disk or the micro floppy disk
in that the data is loaded from the /O ROM into the CPU addressable RAM. This means that whichever
Memory Mode (either 32K or 64K) is currently selected, determines the maximum size of CP/M pro-
gram loadable from the I/O ROM into the TPA. For example, a 34K program which will icad and exe-
cute properly in the 64K mode, will cause a load error if execution is attempted in the 32K mode.

The major difference in the loading of a micro floppy disk program and an I/O ROM program is that
the entire micro floppy disk program is loaded into the RAM memory for execution, while only the first
256 bytes of the I/O ROM program is loaded and executed when a program in an /O ROM is selected.
The I/0 ROM can be thought of as a ROM-Disk for all practical purposes. If the size of the /O ROM
program is larger than 256 bytes, the remainder of the program must be loaded by code within the
first 256 bytes. (The first 256 bytes would be boot-code or an Initial Program Loader for the rest of the
I/0 ROM program.) This is easily accomplished by using the interbank access routine ReadlO at ad-
dress OF753H. BC enters containing the number of bytes to be read in, while A, H and L enter contain-
ing the /O ROM address to be read. The address in the /O ROM is passed with the most significant
byte in A, the middle significant byte in H, and the least significant byte in L. DE enters containing the
destination address in RAM to store data. Note that BC should not request to read in more code than
the amount of TPA space available, otherwise the CP/M area above the TPA will be over-written.

14-7

The following gives a hexadecimal dump of typical page zero information for both the Mapped and I/O
ROMs:

01 23 4567 89 ABG GCDEF
0 C3 03 F6 FF FF C3 06 E8 C3 44 F6 FF FF FF FF FF
10 C3 69 F6 FF FF FF FF FF FF FF FF FF FF FF FF FF
20 FF FF FF FF FF FF FF FF C3 8D F6 FF FF FF FF FF
30 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF
40 57 53 20 20 20 20 20 20 20 20 20 00 00 01 FF FF
50 FF EF FF FF FF FF FF FF FF FF FF FF FF FF FF FF
60 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF
70 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF
80 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF
90 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF
A0 FEF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF
BO FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF
CO FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF
DO FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF
EC FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF
FO FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF

14-8

CHAPTER 15

User’s Guide for Interbank Access Routines

NEC Corporation
Copyright © 1984 by NEC Corporation
All Rights Reserved

156-1

The PC-8401A supports seven interbank access routines to read and write data placed in another bank,
and to execute a program in another bank. In addition, a 128 byte-long buffer is allocated in the com-
mon area as an intermediate buffer for interbank memory access.

Read a byte

Name Getbyte

Address OF6F7H

Entry HL = Address of a byte to read

C = MMR value to swap the byte into CPU address space.
Exit A = Value of the byte.
Alters A, Flags, A and Flags

This routine reads a byte in a bank which is outside of the CPU address space. On entry, the C register
holds the Memory Mapping Register value by which the byte is swapped into the CPU address space
(see the chapter on Memory in this manual.) The HL register pair holds the address of the byle to read.

This routine enables interrupts.

Write a byte
Name Putbyte
Address OF70BH
Entry A = Value to write
HL = Address where the byte is written
C = MMR value to swap the byte into CPU address space.
Exit None
Alters A, Flags, A" and Flags
The memory to be mapped into the CPU address space (passed in C) is sent to the Memory Mapping
Register. This routine then writes the given value (in A) into the specified memory location (addressed

by register pair HL.)

This routine enables interrupts.

15-2

Read a string
Name Getstr
Address OF71FH
Entry B = Length of string to read
HL = Address of the string
C = MMR value to swap the string into address space.
DE = Address in common area where the siring is passed.
Exit None

Alters All

This routine reads a string of given length that is in a memory area located outside of the current CPU
address space.

The DE register pair holds the address in the common memory area into which the string is returned.
(Usually, this area is the block/deblock buffer or the Combuf. See Combuf, below.)

The C register holds the Memory Mapping Register value to the map the memory containing the string
into the CPU addressing space. The HL register pair holds the address of the string in the CPU current
memory.

If the register value of B is zero upon entry, nothing is done.

Interrupts are enabled upon exit.

15-3

Write a string
Name Putstr
Address OF71FH
Entry B = Length of string to write

HL = Address of the string in common area

DE = Address in user memory where the string is stored

C = MMR value to swap the user memory into address space
Exit None
Alters Al
This routine writes a string located in the common memeory area into memary that is outside of the cur-
rent CPU addressing space. Upon entry, HL holds the address of the string in the common area that
is to be written, DE points to the destination address of the transfer, and C holds the Memory Mapping
Register value which switches the destination memory into the CPU addressing space. The B register
holds the length of the string, which must be greater than 0.

Interrupts are enabled upon exit.

15-4

Transfer controf to a program in another bank
Name Execfar
Address 0F733H

Entry HL = Address of the program to execute
C = MMR value to swap the program into address space

Exit None. This does not return to caller.
Alters A, flags, A’ and flags’
Example:
Di ;No interrupts.
LD SP, HISSTK ;Setup stack for the program to

:execute. Note that this stack
;must be available after the MMR
- ;value causes the memory switch.
LD HL, ENTRY ;Entry address of the program.

LD C,HISMMR ;MMR value that swaps the program in.
JP EXECFAR ;Go to the program.

The Execfar is used to transfer control 1o the routine which is outside of the current CPU addressing
space. Interrupts are enabled after the Memory Mapping Register value is changed, and control is given
to the target routine. Take extreme care to set up the correct Stack Pointer location before performing
the jump to Execfar. The stack must be set to RAM which is mapped into the CPU addressing space
when the given value is sent to the MMR. Usually, the stack to be used is outside the addressing space
of the program which issues the Execfar, so the interrupts must be disabled prior to the jump to Execfar.
The Execfar routine itself does not use the stack.

15-5

Execute a subroutine in another bank

Name Callfar

Address OF738H

Entry C = MMR value that swaps the subroutine into CPU space.

HL = Address of subroutine outside of current CPU space.
DE = Return address to the current (eniry) CPU space.

Exit Values returned by the routine.
Alters A
Example:
DI ;No interrupts.
LD SP, HISSTK This stack must be available after
;the MMR causes the memory switch.
LD HL, ENTRY ;Address of subroutine to call.
LD DE.MYRET ‘Where control comes back.
LD CHISMMR ;MMR to swap the routine in.
JP CALLFAR :Don't use “CALL" here.
MYRET:
etc. ‘Control returns here.

Callfar is similar to Exectar, except Callfar is used to invoke a subroutine. The RET instruction at the
end of the far-called subroutine returns control to the address specified by DE in the original memory
mode (that is, the memory mode which jurnped to Callfar). As in Execfar, the stack memory that is point-
ed to by the Stack Pointer must be useable by the target subroutine after the Memory Mapping Register
switches the far memory in to perform the subroutine. Interrupts must be disabled prior to jumping to
Callfar.

The Callfar is invoked by a JMP rather than a CALL.

15-6

Read /0 ROM
Name Readio
Address 0F753H
Entry BC = Number of bytes to read
AHL = Address to read in {/O ROM
DE = Destination Address
Exit None
Alters All
This routine is used to read data or programs in the YO mapped ROM into the current CPU addressing
space. Up to 256 Kbytes can be stored in the /O mapped ROM. On entry, A holds the high two bits
of the address in the IO mapped ROM. HL holds the low 18 bits. The DE register pair points to the
destination in the current CPU memory area, where the data from the O ROM is to be stored. The
BC register pair holds the number of bytes to be read.
Buffer in common area
Name Combuf
Address OF7D7H
Length 128 bytes

The PC-8401A provides a 128 byte long buffer in the common area for public use. The buffer, which
is called Combuf, can be used as an intermediate buffer for Getstr and Putstr.

Note that the BIOS uses this buffer. When an application program needs this buffer to get or put a string

utilizing Getstr or Putstr, the Combuf must be saved by copying it into the application program’s own
buffer. Before any BIOS or BDOS call is made, the contents of the saved copy of Combuf must be restored.

15-7

CHAPTER 16

BDOS Patches for the PC-8401A

NEC Corporation
Copyright © 1984 by NEC Corporation
All Rights Reserved

16-1

The patches made to the standard BDOS can be categorized into the following 2 groups:

1. JUMP instructions to reboot.
The original BDOS uses a JMP 00000H to reboot. In the PC-8401A BDOS implementation, all
jumps go to a tiny routine in the common area which is at address 00000H when in the RAM
user mode, or at the BIOS Warm Boot entry (0F803H)} when in the ROM mode. This is because
in the ROM user mode, address 00000H contains a jump to the system initializer code rather
than to the BIOS Warm Boot entry.
Such jumps could always come directly to the BIOS Warm Boot entry rather than by passing
through address 0D000H; however, this always terminates XSUB, and might cause a loss of com-
patibility with applicaton programs that alter the jump at address 00000H to trap BDOS errors
and Control-C (~C).

2. Instructions to read and write the 1/O byte.

The original BDOS assumes that the I/O byte is always placed at address 00003H. The PC-8401A
locates the /O Byte at address 08003H only when a ROM program is executed.

The actual patches are listed below. All addresses are relative to the BDOS base address.
/O byte patches

(patches are given in 8080 op. codes)

02ED call getiOb :Get /O byte.

02F3 thid 10loc

GetlOB routine

The GetlOB returns the 1/O byte value in A. The word IOLOC is setup by the CCP to 00003H when
executing a RAM program, or to 08003H when executing a ROM program.

The GetlOB routine is placed in the common area.

getlOb::
thid i0loc :Get address of /O byte location
;in this CP/M mode.
mov am ;And get 110 byte value there.
ret

16-2

Reboot patches

All the jump instructions in the list below now go to the BIOS reboot routine in the common area.

00A1 iz reboot
0087 jmp reboot
013D iz reboot
02BA jz reboot

16-3

Reboot routine in Common area

;Comes here from BDOS when reboot took place.

reboot::
in mmr iWho called BDOS 7
ani 000011008 Pickup rom/ram bits.
jz wboot ;ROM program called. Go directly
;lo Warm Boot entry.
jmp 0 ;Otherwise jump to 0. This is to

.avoid ~C or BDOS error
:terminating XSUB.

16-4

CHAPTER 17

Function Code Definitions of the PC-8401A BIOS

NEC Corporation
Copyright © 1984 by NEC Corporation
All Rights Reserved

17-1

SECTION 1
SCREEN DRIVER FUNCTIONS

Name Code Function

Chput 000H Output a character to console.
Litout 001H Output a character literally.
Bitout 002H Output a character with given font.
Selcon 003H Select console.

Askcon 004H Return current console.

Setatr 005H Set attributss.

Askatr 006H Return current atiributes.
Revchr 007H Reverse characters.

Setmode 008H Set screen modes.

Askmode 009H Return current screen mode.
Csretl 00AH Enable/Disable cursor display.
Askcsr 00BH Return current cursor display status.
Locate 00CH L.ocate cursor.

Goup 00DH Move cursor up.

Godown D0EH Move cursor down.

Goright 00FH Move cursor right,

Goleft 010H Mover cursor left.

index 011H Index.

Rindex 012H Reverse index.

Askpos 013H Read current cursor position.
Setscr 014H Set Scroll Region.

Askscr 015H Return current screlling region.
Eradsp 016H Erase dispiay.

Eralin 017H Erase line.

Selset0 05CH Select GO character set.
Seiset! 01CH Select G1 characier set.
Askset 01DH Return current character set.
Tabset 01EH Set a tab stop at cursor position.
Restab 01FH Clear one or all tab stops.
Resscn 020H Reset screen.

Readpix 021H Read pixels in a line.

Wripix 022H Write pixels in a line.

17-2

Name

Move
Pset
Line
Box
Boxfill
Setcol
Askgcp
Askcol
Point

Name

initcom
Clscom
Recveom
Sendcom
Policom
Xonxoff
Sendbrk
Carrier

Name

initcas
Clscas
Scrfile
Skipfile
Makefile
Readblk
Viyblk
Wrtblk
Wrieof
Motorcti

Code

025H
026H
027H
028H
029H
02AH
02BH
02CH
02DH

Code

C2EH
02FH
030H
03tH
032H
033H
034H
035H

Code

036H
037H
038H
039H
03AH
038H
03CH
03DH
03EH
03FH

SECTION 2
GRAPHICS DRIVER FUNCTIONS
Function

Move graphics cursor position.

Plot a pixel.

Draw a line.

Draw a box.

Draw a box and fill inside.

Set graphics color {1 or 0.)
Interrogate graphics cursor position.
Interrogate current graphics color.
Return value of pixel.

SECTION 3
COMM DRIVER FUNCTIONS
Function

Initialize comm channel.

De-activate comm channel.

Receive a character from comm channel.
Send a character to comm channet.
Sense comm channel.

Set/Reset Xon/Xoif flow control.

Send break signal.

Sense carrier status.

SECTION 4
CASSETTE DRIVER FUNCTIONS

Function

Initialize cassette interface.
De-activate cassette interface.
Search for file.

Skip a file.

Make a file header.

Read a data block.

Verify a data block.

Write a data block.

Write EOF block.

Motor control.

17-3

Name

Settime
Gettime

Name

Fread
Fwrite
Ffrmt

Name

Kbsts
Kbin
Kbflsh
Setsftky
Expct!
Kbufsts
Lookchr
Defcsr
Csrmod
Askcmod
Repcnt

Name

Rclrdsk

Code

040H
041H

Code

042H
043H
044H

Code

045H
046H
047H
048H
045H
04BH
04CH
04DH
04EH
056H
05BH

Code

04FH

SECTION 5
TOD CLOCK DRIVER FUNCTIONS
Function

Set time to TOD clock.
Get current time.

SECTION 6
FLOPPY RELATED FUNCTIONS
Function
Read sectors.

Write sectors.
Format floppy.

SECTION 7
KEYBOARD RELATED FUNCTIONS

Function

Sense KB status.

Read a character from KB buffer.
Flush KB buffer.

Set softkey string.

Set mode of softkeys expansion.
Sense number of characters in KB buffer.
Scan KB buffer for particular char.
Define function key.

Select cursor mode.

Ask cursor key mode.

Set key repeat interval.

SECTION 8
RAM DISK RELATED FUNCTIONS

Function

Initialize RAM disk.

17-4

Name

Dsetup
Dial

Wait
Selline
Modmode
Modsts

Name

Autpoff
Slepmod
Waktim
Askwktim

Code

050H
051H
052H
053H
054H
055H

Code

057H
058H
059H
05AH

SECTION 9
MODEM RELATED FUNCTIONS
Function
Setup for dialing.
Dial a digit.
Wait.
Select line connection.

Setup Modem mode.
Ask Modem mode.

SECTION 10
SLEEP/WAKE UP RELATED FUNCTIONS
| Function
Setup time to Automatic Power Down.
Enter Sleep Mode.

Setup wakeup time.
Return current wakeup time setting.

17-5

Askatr, 8-9, 17-2
Askcmod, 5-8, 17-4
Askcol, 8-28, 17-3
Askcon, 87, 17-2
Askcsr, 813, 17-2
Askgcep, 8-28, 17-3
Askmode, 8-12, 17-2
Askpos, 8-16, 17-2
Askscr, 8-18, 17-2
Askset, 8-21, 17-2
Askwktim, 10-3, 17-5
Autpoff, 10-2, 17-5

BDOS Patches for the PC-8401A, 16-1
Bitout, 8-6, 17-2

Box, 8-27, 17-3

Boxfill, 8-27, 17-3

Carrier, 67, 17-3
Chput, 8-3, 17-2
Ciscas, 7-6, 17-3
Ciscom, 6-4, 17-3
Csrctl, 813, 17-2
Csrmod, B-8, 174

Defcsr, 5-7, 17-4
Dial, 6-8, 17-5
Dsetup, 6-8, 17-5

Eradsp, 8-19, 17-2
Eralin, 8-19, 17-2
Expctl, 5-5, 17-4

Ffrmt, 11-5, 17-4

Fread, 11-4, 17-4

Function Code Definitions of the PC-8401A BIOS, 747
Functional Specifications of the PC-8401A Cassette Driver, /-7
Functional Specifications of the PC-8401A Screen Driver, 8-7
Fwrite, 11-5, 17-4

Gettime, 513, 17-4
Godown, 8-15, 17-2
Goleft, 8-15, 17-2
Goright, 8-15, 17-2
Goup, 8-14, 172

Index, 8-15, 17-2

initcas, 7-6, 17-3

Initcom, 6-2, ¥7-3

Initialization of Screen and Keyboard Options in the PC-8401A, 9-7

Kbfish, 5-4, 17-4
Kbin, 5-4, 17-4
Kbsts, 5-3, 17-4
Kbufsts, 5-6, 17-4

Line, 8-26, 17-3
Litout, 8-6, 17-2
Locate, 8-14, 17-2
Lookchr, 5-6, 17-4

Makefile, 7-8, 17-3

Memory configurations of the PC-8401A, 4-1
Modmode, 6-9, 17-5

Modsts, 6-10, 175

Motorctl, 710, 17-3

Move, 8-26, 17-3

Noles for Use of XSUB Under the PC-8401A CP/M, 3-1

Point, 8-28, 17-3
Pollicom, 6-6, 17-3
Pset, 8-26, 17-3

HAclrdsk, 5-11, 17-4
Reveorn, 6-5, 17-3
Readblk, 7-8, 17-3
Readpix, 8-24, 17-2
Repcnt, 5-9, 17-4
Resscn, 8-23, 17-2
Restab, 8-22, 17-2
Revchr, 8-9, 17-2
Rindex, 8-16, 172

Selcon, 8-7, 17-2
Selline, 6-9, 17-6
Selset(, 8-20, 17-2
Selset1, 8-20, 17-2
Sendbrk, 6-6, 17-3
Sendcom, 8-5, 17-3
Setatr, 8-8, 17-2
Setcol, 8-28, 17-3
Setmode, £-10, 17-2
Setscr, 8-17, 17-2
Seisftky, 5-5, 17-4
Settime, 5-12, 174
Skipfile, 77, 17-3
Slepmod, 10-2, 17-5
Specification of the MENU in the PC-8401A, 71-7
Specifications of POWER OFF and SLEEP, 70-7
Specifications of the MODEM?7 Protocol in TELCOM, 13-7
Specifications of the PC-8401A BIOS
Keyboard, Disk and Clock, 5-7
Specifications of the PC-8401A Communication Driver, 6-7
Specifications of the PC-8401A Floppy Disk Driver, 71-1
Specifications of the ROM in the PC-8401A, 14-1

Srcfile, 77, 17-3

Tabset, 8-22, 17-2
Technical Documentation for the PC-8431A, 12-7
The PC-8401A CP/M Environment, 2-7

User's Guide for Interbank Access Routines, 75-7
Viyblk, 7-9, 17-3

Wait, 6-8, 17-5

Waktim, 10-3, 17-5

Wrtblk, 7-8, 17-3

Wrieof, 79, 17-3

Wripix, 8-25, 17-2

Xonxoff, 6-6, 17-3

