Mudel 100 top panel contains a screen composed of a rectan-
tray of so-called “pixels”, 240 across and 64 down. Each pixel is

0.8 millimeters square. The pixels are part of what is called a
crystal display.

i uid Crystals Work

;rnu hold two polarizing filters between your ¢ye and a table
; vou will find that the amount of light that passes through is a

ion of the angle between the two filters.
ne easy way to try this is to obtain two sets of Polaroid™

lasses. Hold one pair with the lenses side by side and the other pair
_t hc lenses one above the other. No light will pass through. If the
ﬁ are held with the lenses side by side, light will pass through.

215

216 Inside the TR5-80 Model 1 00

This is due to the fact that light can be polarized, W
passes from the lamp toward you and through the furthest p
lens, it has been filtered so that all the light is polarized. et’s 2
s polarized vertically. When this vertically polarized light?:_
lens closest to your eye, it will pass through only if the lens is tus
same way as the first lens (so that it also passes vertically pi
light). 1

Some transparent substances have no effect on light p
through them, while others will twist the polarization of light p
through them. Depending on the particular substance and the
travelled through the substance, vertically polarized light m:
converted to horizontally polarized light, and vice versa.

Such substances are not hard to find. Everyday dextrose, a:
mon sugar made from corn, will twist polarized light. Its very;

was chosen because it twists light to the right. “Dextro-" is
which means “to the right”. !

A liquid-crystal display is composed of a caref ully prepared lig
placed between two glass panels. The top panel includes a polariz
filter; the top and bottom panels contain nearly transparent electrog
extending vertically and horizontally.

Room light striking the screen passes first through the polarizij
panel. The furthest penetrating light is the light which is polarized, sa
vertically. This light bounces off the bottom panel, and (if the pola
tion has not changed) passes through the polarizing panel a se 0n¢
time, reaching the eye. Any part of the screen where this occurs is
perceived as being light in color., ¥

The liquid is designed to twist the light when it (the liquid)
subjected to an electric field. For a certain pixel to be perceived asdaf'
the LCD driving circuitry must activate the row and column electrodes
associated with that pixel every so often. This occurs once every
fourteen milliseconds and lasts about half a millisecond.

The electric field being emitted from the electrodes causes the
liquid to twist the light a certain number of degrees.

The Liquid-Crystal Display Screen 217

* The eye’s viewing angle has an effect on the amount of polariza-
jon associated with the glass panels, so that no single number of
ees of twist will produce a dark panel for all viewing angles. The
otary control DISP on the right side of the Model 100 is a potentiome-
gr, which varies the voltage used to activate the pixels and optimizes
lhe appearance of the screen for a particular viewing angle.

CPU Control of the Screen

. CPUcontrol of the 15360 pixels is accomplished through ports FE
':CD data) and FF (LCD status /command), as well as output ports
9and BA. Specialized integrated circuits (HD44102and HD44103)
| ¢ used to drive the pixels, and provide the 15360 bits of RAM
memory needed for LCD operation. (A detailed discussion of LCD
1/0 ports is beyond the scope of this book. For further information,
ee the Model 100 Service Manual pages 4-13, 4-14, 4-28, 4-29, 4-30,
-1, and 7-2.)

- The 15360 bit RAM memory mounted on the LCD printed circuit
board is not directly addressed by the CPU. Instead, it is loaded
tarough the 1/ O ports. Some of the regular RAM memory, located
from 8000 to FFFF, however is allocated to LCD data. The area from
FE00 to FF40, for example, contains the ASCII values presently on
the screen. This is the source of information used when BASIC per-
rms the LCOPY command.

- It 1s clear however, that the actual screen contents (the on/ off
States of the pixels) are not found in RAM at FE00-FF40. For exam-
ple, if PSET and PRESET are used to turn pixels on and off, the
':-'-COPY command will not convey the results to the printer, even if the
pixels form a printable character. Similarly, the patterns that reach the
LCD by means of PSET and PRESET will not scroll upwards when
the rest of the display does.

Character Formation

When sending data to the LCD screen, the CPU does not send
ASCII values to the integrated circuits on the LCD board. Instead, it
sends 1’s and 0’s which are to be stored in the LCD RAM. The LCD
RAM 1s used to drive the individual pixels.

218 Inside the TRS-80 Model 100

The ROM routines used by the CPU in handling screen output use
several different routes for the data. In the case of pixel-specific rou-
tines like PLOT and UNPLOT (used in the BASIC commands PSET,
PRESET, and LINE) the ROM routine sends addresses and data to
the LCD chips to affect only the pixels in question.

When ASCII characters are printed to the screen, the routine first
loads the ASCII value to the RAM area FE00-FF40. It later interprets
the ASCII value according to a ROM table to determine which bits
must be turned on and off to form that character.

Formation of Character Shapes

No character shape information is needed for ASCII values from
0 to 31 (decimal) as these are not printable characters. They instead
merely cause cursor movement, etc.

Since each character printed on the screen lies in an array that is
six pixels wide and eight pixels deep, forty-eight bits of data are
required to define the whole character. (It happens that the rightmost
column is always empty in the case of ASCII values 32 to 127. As we
shall see, the ROM storage technique takes advantage of this fact to
save ninety-six bytes of ROM.)

The character-generation table begins at 7711 and runs to 7BF0.
(The ROM routine that uses it is located at 73EE). To see how the table
works, print out (using the PEEK function) the five values starting at
memory address 78CE (30926 decimal). The contents of these loca-
tions are 28, 160, 160, 144, and 124. Now, convert each of these
numbers to binary notation. The results are 000111000, 10100000,
10100000, 10010000, and 01111100, If these binary numbers are writ-

ten in a column, something interesting will emerge, as shown in figure
13.1.

30926 000FE$00
30927 40100000
30928 10100000
30929 10010000
30930 0¥11§100

Figure 13.1. Lower-case “y”

The Liquid-Crystal Display Screen 219

Do you see it? Turn the page sideways, and you will see a lower-
case “y” among the 1’s and 0’s.

The table begins at 7711 with the pixel information for an ASCII

32(decimal) which is a space. As you would imagine, it is composed of
all zeros. The table continues, five bytes at a time, through ASCII
values 33 to 127.
- Atlocation 78F1 the table changes. Since many of the characters
beyond 127 use all six columns of pixels, six bytes of data are used for
each character. The character with value 128 (which looks a little like a
telephone) occupies 78F1, 78F2, 78F3, 78F4, 78F5, and 78F6. From
this point to the end of the table, each character uses six bytes. The
table finishes at 7BEB-7BFO0 for the character with value 255.

It is interesting to use this ROM table to generate the screen
characters yourself. The program in figure 13.2 prints the 224 printable
characters of the Model 100 to the screen. Each character is displayed
twice — once in the normal way by use of the BASIC PRINT com-
mand, and a second time with pixels turned on one by one to form the
: characters.

The two images of the character are identical in appearance
because they are both based on the bit-graphics information in the
ROM table. What’s different is the sort of programming that puts the
bits on the screen. When the PRINT command is executed, BASIC
invokes machine-language subroutines which extract the information
from the ROM table and put it on the LCD screen — all the pixels turn
on, forming the character, virtually simultaneously. The second char-
~ acter image reaches the screen much more slowly (you can see that the
. pixels turn on one by one) because the calculation of which pixels to

turn on is done step-by-step in BASIC.
| The BASIC PRINT statement gives the ASCII value to an assem-
bly language routine in ROM, which uses the machine language sub-
routines PLOT and UNPLOT to turn on the proper pixels.

220 Inside the TRS-80 Model 100

10 CLS:FOR CR= 32 TO 255: PRINT @129, CR;
:PRINT@134, CHR$ (CR);:IFAS < 128THEN
AD=30481+(CR-32)*5 -
ELSEAD=30961+(CR-128)*6

14 FOR COL=0 TO 5: BY=PEEK(AD+COL)
IFCR <128 AND COL=5 THEN BY=0

16 FOR ROW =0 TO 8:IF BY AND (2 AROW)
THEN PSET(96+COL,24+ROW)

ELSE PRESET(96+COL,24+ROW)

20 NEXT ROW:NEXT COL:BEEP

100 IF INKEY$="" THEN 100
ELSE NEXT CR:END

Figure 13.2. Program to demonstrate the ROM character-
generation table.

If your printer includes bit-addressable graphics, such as the
Epson MX-80 with Graftrax, you can print the CODE and GRPH
characters directly at the printer. A program to print the values in table
13.1 1s shown in figure 13.3. |

10 kI=31729 : e$=chr§(27)+chr$(75)+chr$(6)+chr$(0)
: for as=32 to 127:for kt=0 to 43: if peek(kl+kt)
< >-as then 1000 else for co=0 to 5:
va=peek(kl+kt+co*44) :if va =0 then Iprint space $(12);
:goto 900
20 lprintusing” ##8 "
;va;:lprinte$;;:ad=5"va+30321:
if va=>127 then ad=va*6+30193
30 for bi=0 to 4: a=peek (ad+bi) :gosub 2000
:next bi: if va=>127 then a=peek(ad+5)
:gosub2000 else a=0:gosub 2000
900 next co:lprint
1000 next kt:next as:end
2000 a1=0:for ib=01to 7:
al=al or ((aand 2 (7-ib))<>0) and 2 ib)
:next ib: call 5232, at:return

Figure 13.3. Program to print Model 100 characters to
bit-addressable dot-matrix printer.

The Liquid-Crystal Display Screen 221

. Let’s analyze the program line by line and see how the printing is
“accomplished.
Line 10 sets up a FOR loop which picks an ASCII value and
searches the keyboard-decoding ROM table (see chapter 6) for the
place in the table where that lower-case key is located.

When a particular lower-case key is found, the uppercase GRPH
SHIFT-GRPH, CODE, and SHIFT—CODE ASCII equivalents are
extracted from the keyboard-decode table through the expression:

va=peek(kl+kt+co*44)

The resulting six ASCII numerical values are printed by lines 20,
30, and 2000. In a few cases there is no ASCII value. For example, no
value is assigned to CODE-G. In such cases the program simply prints
twelve spaces.

The Epson printer with Graftrax uses escape sequences 10 output
the bit-addressable graphics. The sequence is an escape (decimal 27),
the letter N (decimal 75), the number of columns to be printed bit-style
(decimal 6), and a null (decimal 0). The next six values received by the
printer are generated much like the array in figure 13.1. Each “1” in
. binary notation results in a dot on the paper from the print head.

‘ Unfortunately, the Graftrax protocol assigns the bits to the paper.
- “upside-down” from the way the Model 100 assigns the bits to the
~ screen. The FOR loop of line 200 inverts the bits before printing.

| The BASIC PRINT routine converts any ASCII TAB (decimal
'~ value 9) to a varying number of spaces based on where the Model 100
thinks the printer carriage is positioned on the printer. This is handy
for Radio Shack printers that don’t know where the next tab stop is,
but can cause problems when you want to send escape sequences which
sometimes contain the value “97.

The PRINT routine can be circumvented with a machine-
language subroutine call as shown on line 2000.

222 Inside the TRS-80 Model 100

Unshi4ted
ol
44

=
!

45
47
4d
44
L]

=1

= -
=t

-
=4

=
o]

o6
=7
-
&1
21

=
o

9B
9
KR
101
102
107 o
104 kR
&3 - S |
1Cie 1
o
o]
108 fit
119
111
132
) A
114
115
11&
117
11IB
119

LT [SR (R AT N v B

| I e B [

400 o

ot~ | e e

4

Mot

Table 13.1.

SHIFTed

34
&
b
&2
&5
41

-y
onag

&4
35
36
37
94
ce
4z
4
se
4%
%7
&5
bé
&7
&8
&9
70
71

72
74
75
76
77
76
79
8o
&1

=he
BZ
84
8s
=13
EY
=17
8
P

Iﬂ_'| e

L

bk
o

W o0e

CHED O VO TIT T wmIOMMe ST u s

g Ak mi

147%
130

174
142

e

154
12%
150
152
128
147
127
129
159
145

148
131
144

LCD characters

BUM e mEaD s

L

T BN b 5 e Py 4 Dt

Z48
124
247

SHIFT-GRFH

'.-l-]

b
-

rY~==-4 T4hL"PFrs 9

T h = B}

FEl

CODE

160
188
197
207
174
175
192

1935

196
194
195
173
190
181
182

162
187
198

19%
L0V
201

202

205

182

172
00

1649

184
189

1461
204
20&

L
:)

W 8 5 ar

e

r _._!"'I:i'- wan

*
[

o

-

...
a1

Q&0

[

W oo

SHIFT-CODE Y

1564
221
167

166
<08

209

£12
210
<11

1468

177

171
£15
<14
191

213
=19
217
Z18
165

.

cll

o

34 o B I

e

FoR

The Liquid-Crystal Display Screen 223

M Locations Relating to the Display

" A number of RAM locations are set up when the Model 100 is
nitialized, and should be left undisturbed, as should everything above
5F0, by any user program. The most commonly used values are listed
ftable 13.2.

Table 13.2. Display variables in RAM

Name Address Description
CSRY F639 Horizontal cursor position
CSRX FE3A Vertical cursor position

FE3B Number of active cursor lines

F63C Number of active cursor lines

F63D Line-8 lock flag

FG3E Scrolling disable flag

F648 Reverse “video” flag

F675 Output flag 0=LCD 1=LPT

| F788 BASIC POS value

FCCO Beginning of alternate LCD buffer

FDFF End of alternate LCD buffer
BEGLCD FEOO Beginning of LCD memory
ENDLCD FF40 End of LCD memory

F blished ROM Subroutine Calls

~ The most frequently used ROM callis LCD, at 4B44. The charac-
ter in the accumulator is put on the LCD screen at the current cursor
‘position, and the cursor moves to the right (and if necessary, to the next
line). This routine is somewhat like the Model I/ Il routine VDCHAR
at0033. Assuming scrolling has been enabled, then scrolling will occur
!I necessary.

The LCD routine is quite versatile. While no one would be sur-
prised at its response to printable ASCII values (decimal 32 and
‘above), the routine also handles certain values less than 32. These
values are shown in table 13.3.

224 Inside the TRS-80 Model 100

Table 13.3. Nonprintable values which may not be sent to
the LCD routine

Call ROM
Value | ASCII Meaning to Send| Address| Response
07

I
5
I.
i

Bell 4229 7662 Beeping sound
08 Backspace 4461 Moves cursor to left
09 Horizontal tab 4480 Moves to next tab
column- 8,16, etc.
0A Line feed 4225 4494 Line feed-column
remains the same
0B Vertical tab 422D | 44A8 Home cursor
oC Form feed 4231 4548 Clear screen & home
oD Carriage return 44AA Cursor to left edge-row
does not change
Escape 43B2 !nterpret next character

- The nonprinting values are decoded accordingtoa ROM tableat
438A-43A1. The escape sequences, in turn, are decoded in a ROM
table at 43B8-43F9. The addresses of the routines to accomplish the
various escape sequences can be determined from the ROM table,

There are twenty-one permissible LCD escape sequences which are
listed in table 13.4.

Table 13.4. LCD Escape Sequences.

ROM
Address| Function
Up one line unless already at
edge
42 B 446E Down one line unless already
at edge
43 C 4453 Right one space unless
already at edge
£ D 445C Left one space unless already
at edge
45 E 4548 Same as printing 0C-clears
screen
48 H 44A8 Same as printing 0B-moves
cursor to 1,1

continued on following page

The Liquid-Crystal Display Screen 225

4A J 454E Erase from cursor to end of
line
425D | 4B K 4537 Erase from cursor to end of
line
4258 | 4C L 44EA Insert a blank line on LCD at
cursor
4253 | 4D M 44C4 Delete a line on LCD at current
line
4249 | 50 P 44AF Turn on cursor
424E | 51 Q 44BA Turn off cursor
4235 | 54 T 4439 Set system line (lock LCD
line 8)
423A | 55 U 4437 Reset system line (unlock LCD
line 8)
423F | 56 V* 443F Lock LCD display (no
scrolling)
4244 | 57 W 4440 Unlock LCD display (allow
scrolling)
4262 | 58 X 444 A Repaint screen
59 Y 43AF Cursor position (see text)
6A J 4548 Same as printing 0C-clears-
screen
6C 1 4535 Erase entire line containing
: cursor
ENTREV | 4269 | 70 p 4431 Set reverse character mode
EXTREV | 426E | 71 q 4432 Turn off reverse character
mode

In other words, if a character value listed in table 13.3 1s “sent to
the screen” by the LCD routine, the action shown in the table will be
‘taken. If the character “sent to the screen”is an ASCII escape character
(decimal 27) then the character that follows will be interpreted as an
escape sequence as shownintable 13.4and notasa printable character.

' *Radio Shack incorrectly lists this as ESC Y.

ﬁ

226 Inside the TRS-8C Model 100 |

Several of these routines are used directly by BASIC. The BASIC J
command CLS is executed by means of a call to the CLS routine at |
4231. (CLS is equivalent to the Model I/11I routine VDCLS at 01C9.)
Also, note that the BASIC command BEEP is executed by means of a
call to the routine at 4229 listed in table 13.3.

How to Send Special Characters

There are several ways to program each of the functions listed in
these tables. The first is simply to load the character (or characters, in
the case of an escape sequence) into the A register, and execute one or
more RST 4 instructions. This requires several opcodes to execute
however.

Alternatively, you can call the address listed as “CALL address”
in the table. If you disassemble that code, you will find that in each case
the value is loaded to the accumulator, and the RST 4 is invoked.
Because these call addresses have been published by Radio Shack, they
are likely to survive any ROM upgrades.

Another means of programming the functions, in the case of the
éscape sequences, 18 to use the ESCA subroutine at 4270. Before calling
the routine, piace the value of the desired escape sequence from table
13.4 in the accumulator.

Finally, it is possible in each case to directly call the routine shown
in the “ROM address” column. The advantage is faster execution time,
while the disadvantage is that the address may change with a ROM
upgrade.

Sending a carriage-return-line-feed combination to the screen can
be accomplished with a call to CRLF at 4222 as shown below:

MVI A, 0D ‘LD A, OD
RSI 4 : send to LCD
MVI A,0A LD A, OA

RST 4
RET

This routine will save four bytes each time you use it.

The Liquid-Crystal Display Screen 227

}-Sending Characters to the Printer

The LCD routine is versatile in other ways. It relies on a flag
stored at F675 which, if zero, indicates that output should be directed

tothe LCD, as the name suggests. If the value at F675 is nonzero, the
yalue in the accumulator will be sent to the line printer instead. This

may be seen, for instance, in the code for LLIST at 113B and the code
for LIST at 1140:

1138 3E 01 MVI A, 01 LD A, 01

413D 32 75 F& STAF875 ;LD (F675), A
1140 C1 POP B -beginning of LIST routine

To send output to the printer, simply set the printer flag at F675

- before calling RST 4.

How to Call 4B44

If you dissassemble all of ROM, you will see that LCD 1s never
invoked by a CALL 4B44. Instead the ROM designers placed a JP
4B44 at ROM address 0020, so that an RST 4 (sometimes called an
RST 20) opcode may be used, saving two bytes of ROM each timeitis
called.

Obviously, not all uses of the LCD routine may be accomplished
by an RST 4. For example, a conditional call cannot be accomplished
in less than three bytes. This may be seen in ROM at 4B3F and at

54BC.
Other Published LCD ROM Routines

Two routines allow the machine language equivalent of the
BASIC commands PSET and PRESET (which are abbreviations of
“pixel set” and “pixel reset”). These are PLOT at 744C and UNPLOT
at 744D, respectively. In each case the pixel to be changed is addressed
through the DE register-pair. D contains the X coordinate between 0
and 239. E contains the Y coordinate between 0 and 63.

228 Inside the TRS-80 Model 100

Cursor Position Routines

The routine, POSITallows a machine language program to handle
the cursor directly. POSIT, at 427C, moves the cursor to the position
given in the H (column 1-40) and L (row 1-8) registers. This routine is
almost identical to and is accomplished by the ESC-Y sequence.

The ESC-Y sequence is four characters long. It is composed of an
escape (decimal 27), a Y (decimal 89), the desired row plus 31 decimal
(sum varies from 32 to 39), and finally the desired column plus 31
decimal (sum varies from 32 to 71). Building up this escape sequence
takes many bytes of instructions. The call to POSIT at 427C is always
more economical. To see this, look at the code at 427C-4289:

427C 3E 59 MVI A,59 ;LD A,59 “Y”
427E CD 70 42 CALL ESCA

4281 7D MOV AL ,desired row
4282 D6 1F ADI 1F ;make it printable
4284 E7 RST4 -print it

4285 7C MOV A,H ;desired column
4286 C6 1F ADI 1F

4288 E7 RST 4

4289 C9 RET

The routine is interesting for several reasons. First of all, it is the
only four character escape sequence for the LCD. Second, it illustrates
that characters in the escape sequence must be greater than 32 decimal,
(1.e. printable) so that the RST 4 routine won’t mishandle them. Third,
it shows what lengths Microsoft went to to make sure that the ROM
operating system is cleanly structured. Virtually all routines affecting
the screen are, at bottom, communicated to the screen through the
RST 4 routine. This allows the programmer in charge of RST 4 to be
sure that he has exclusive control over the inner workings of the screen.

O SN _ s b

The Liquid-Crystal Display Screen 229

POSIT is handy for moving the cursor about, as well as for
returning it to its former position when printing. To do this, get the
current cursor position with LHLD F639, store it with PUSH HL,
print at the screen as desired, and then execute POP HL and CALL

427C.
Unpublished ROM Routines for the LCD

Several routines are available which relate to the LCD, other than
those published by Radio Shack. These routines may change if the
' ROM is altered creating problems.
| A routine at 001E simply sends a space to the screen. A call to this

location would take up three bytes, which is no savings over simply
loading a 20 hex to the accumulator (two bytes) and calling RST4. This
" routine would only save bytes if you were at the end of a subroutine and
needed to print a space, then return. A jump (not a call) to 001E could
do both at once.
Another nice routine is located at 11A2. Assume HL points to a
string of values (known to be printable) terminated with a 00 hex.
Calling 11 A2 will send that string to the screen. An identical routine is
located at SA58.
Finally, a routine at 1BEO prints up to 256 characters to the
screen, filtering out unprintable characters. The values are pointed to
by HL, and the number of values to print is stored in the B register. (1o
print 256 values, load 0 in the B register.) This routine is handy for
memory dumps. One drawback is that carriage returns and line feeds
are suppressed. Recall that with this routine, as with any routine using
RST 4, the output may be routed to the printer simply by changing the
value at F675.
The routine at 27B1, in a rather circuitous way, sends to the screen
the character string pointed to by HL and ending with either an 0 or a
quotation mark.
The routine at 5791 sends to the screen the character string which
is pointed to by HL and ends with either a 0 or a quotation mark. The
whole output is preceded by a carriage return if the cursor is not
already located at the left edge of the screen.

