PC-8201A Technical Manual

First edition

Mar 15th 1984

NEC Corporation
Perscnal Computer development division

IMPORTANT NOTICE

(1) All rights reserved. This manual is protected by
copyright. No part of this manual may be reproduced in
any form whatsocever without the written permission of the

copyright owner.,

(2) All efforts have been make to ensure that the contents

of this manual are correct; however, should any errors be
detected, NEC would greatly appreceate being informed.

(3) NEC can assume no responaibility for errors' in this
manual or their consequences. The entire risk as to the
results of and performance of this manual is assumed by

YOul.

(c) 1984 NEC Corporation
Personal Computer Development Division
Tokyo, Japan

The numeric notation and rules in illustration

In this manual, all numbers are expressed in Decimal
unless preceded by special radix prefix “X, “0 ,"B and “D.
“X, "0 and "B represent hexadecimal, Octal and Binary numbers
respectively. For instance, °X1888 is hexadecimal number
10800, which is 4896 in Decimal. Similarly ~0466 is octal
number 480, which 1is 256 in Decimal. ©“B1800806G68 is Binary
number 1008000808, 128 in Decimal. "D is used to explicitly
tell that is the decimal number.

In the illustration, the upper side of the memory map
is near “XFFFF. So the part drawn below . another part is
allocated at lower address area.

“XFFFF
================= ! Upper.
! '

i File A '

' [

i File B i

] i | Lower

! HERY)
“X8000

Fig 8.1 The °'File A' is located
upper the °‘File B'.
(°=" means "skipped’.)

And the address

illustration points the

and the pointers written in
just above the line.

APOINT ---> “X806689

(“XDoae) “XDgge
i (“XEFFF) '
;================ (Skipped)
1 ("X8809) :
: {-— APQINT
(*X7FFF)

Fig 8.2 Pointer

and its contents

the

Authoré:

Chapter 2 -—- 4 |

Mr.Youshiro Hayashi

Software Engineer

Application Technology Department

Personal Computer Sales Promotion Division
Chapter 1,5 -- 8

Mr.Hiroaki Yokoyama

Software Engineer

" Development department

Personal Computer Development Division
Chapter 9 -- 14

Mr.Akio Takagi

Software Engineer

Development Department

Personal Computer Devg]opment Division
Chapter 13

Mr.Moriharu Seki

Hardware Engineer

Develcpment Department
Personal Computer Develcpment Division

Rewritten and edited by Mr.Hirocaki Yokoyama

CHAPTER 1

CHAPTER

NNRNDNN N
N -

* - * [] * *

BPWONNNE

CHAPTER

PWN P

WWWLWWW WVWLOWLW W
(WY

- * . L L] *

CUBRWWN e

" CHAPTER

LR RN R N

* * L] * *

uauau

INTRODUCTIGN

MEMORY MAP

OVERVIEW
BANK SWITCHING ARCHITECTURE . .
Bank Switching Hardware . . .
Bank Switching Software . o o
GENERAL MEMORY MAPPING OF INTERNAL
SAMPLE L J * [) * * * * * L] [] L] ° L] L]

* * L

e (Ne o o o

HOW TO USE 2ND ROM

CONSIDERATION OF INTERRUPT o« o o
Power Off Trap (ADDRESS “X4CFA)
Barcode Reader . « ¢« ¢« ¢ ¢ o o &

od-oooo

e ® o & N)e o

UART o o o e .
Interval Timer (ADDRESS XIEBE Wi
Inter‘r‘upt) e o e & o & o e o
ROM SWAPPING METHOD o o .
THE METHOD TO USE 1ST ROM ENTRY FROM
Samp]e ¢ o s ¢ & o . o

SEQUENCES 1IN THE 2ND ROM o .
SUMMARY -- IMPORTANT NGTICE
SAMPLE L} * L] . * * * *] [*

L] [] . *

e o o

HOW TO USE 2ND/3RD RAM

READ AND WRITE TO ANOTHER RAM BANK
Methed 1 CUSING 1st ROM1
GETBNK L°X7EECT « « « « « & & &
PUTBNK C"X7EEB] . . '

Method 2 CUSING YOUR ORIGINAL CODEJ

UNDERSTANDING THE RAM FILE CONCEPT

SUMMARY . . « o o
WHAT IS RaM FILE7 o o s
DO File (ASCII File) .
BA Fl]e ¢ o o o e e o
CO Fl]e * L] L * L]
The Order OFf The Files

L] > L] L3 L d
o e o & o
o ®o o 0.0 o
L] * * Ld * L]

3
A
Ire o ¢ o o
=

e o o o o

e (e o o o
L] * L] *
- * . * L) L)

O

e Tle o o o
-

e £ o o o o
o

e e o o o

* * L 3 -
* L] * L]
* [) L) *
*® e e o

®

OQQOOQO.NOCOC
e o o o e o) e ¢ o o
e ¢ o o Lo s ~te o o o
e o o o o o o
¢ o o o o o o
e o o o o o o

e o o o
e o o o o
e o o o o
e o o o o
e o o o o
o o o 9 o
T e e e o o

* - L L 2 > *
- L 4 * L] . *
e ©® o o o o
* @ e e o o
® o e o o o
® o e o o o
> - L 3 - * *

51
i

S1
33

CHAPTER 6 DIRECTORY STRUCTURE _ |
6.1 DIRECTORY CONFIGURATION PER ENTRY .« « o ¢ & o o . 76

CHAPTER 7 . RAM ORGANIZATION
7.1 MEMORY MAP ABOUT RAM FILES o+ ¢ ¢ ¢ o ¢ o o ¢ o o o« (9
7 L] 2 BOOKKEEP I NG AREA L] L L] L] L L] [] . L] * * L] L] L] * L] * 86
7.2.1 Part I (For RAM File Handling And BASIC) . . . 87
) 7'2‘1.1 FSIDSV L) * L] L] * L] L * [] * L L] L] * L * L] L] L] L] 88
) 7‘2.1.2 HIMEM L L[] L * * . [] * L] L L] L[] [] * L] * L] * * L] * 88
? L 2 * 1 * 3 TXTTAB * L] L] L] * * L] L L] * . L] [] L] * L] L] * * » 89
?.2.1 .a STKTOP L] L * * * L[L) L] .] ® * * L) L[] * L] * . L] 89
?'2.1.5 DIRTBL L J L[] . * L] * * [] L) L] L) L] * * * * L] L L] * 98
?.2.1’6 NULDIR . . L[] L] L[] L L) * * * . * * [] * * L] L] * L] 98
7.2.1.? SCRDIR . * * L] L] * L] * L[] L] L L] * * L] L * * . . 91
702.1'8 EDTDIR L] L] [* L] * [] * * . L] L[] L] L . * * * . * 91
7‘2.1’9 USRDIR L] » [] » L * L) L] [] ® [] L] * L] L[] * * * * * 91
’ 7.201.18 BOTTOM * L] * L] L * * L] L L] L] L[] * * .. * * * * * 92
7.2.1.11 MEMSIZ L] L . * * L] [L] L] L] * L] L] L] L) [] L]] L] . 92
7 L] 2 L] 1 L[] 12 FRETOP L L] [[) L] L [] L] . L] [] * L] * L] L] * L] [] L] 92
? L] 2 L] 1 L 13 ASCTAB L] * L] L] L] * L] * 'y L] L [] L] L] L [] L] L] . * 93
7.201014 BINTAB * [} L) [[] [} ‘. . L) . L) [L) [} . [} . . * . 93
7 * 2 L 1 * 15 VARTAB L] L] L] L L] * * L] L[] L] L[] L] L] * L] [] [] . L] L) 93
? ‘2 [] 1 * 16 ARYTAB [] L L] L] L] * L] * * * * . L[* L] L] [] L[] L . 94
7.2.1.17 STREND ¢ ¢ ¢ o o o o o o o o o o o o s o o o + %94
?.2‘1.18 FILTAB [[) L] L[] [] * L] L] [] L * [] .A L] [] * * * ® L[] 94
? * 2 * 1 L] 19 NULBUF L] L] [] * [] [L] L] L] L] * . L] L] 95
7.2.2 Part II (VRAM Area For LCD) . e o o o o+ o o 98
7.2.3 Part 111 (Bookkeeping Area For BIOS) o+« . . 98
?.2.4 FCB (Fl]e ContrOI BIOCk) I I R 99
CHAPTER 8 RAM FILE HANDLING
8.1 WHAT SHOULD WE DO IN RAM FILE HANDLING . . « . . . 183
8 L] 2 HOU TO MAKE NEU F ILE * » [] * L] * * L] * * L] L] * L L 196
8.2.1 How To Register The New File Name 186
8.2.2 How To Make DO File . « o o ¢ o o o o o o« o« o« o« 1066
80203 HOU To Make A BA Fi]e . * 0 . . . e o . . . ° . 169
8"204 HOU To Make A CO Fi]e . . » ¢ . 111
8.3 HOW TO DELETE A FILE .« +o ¢ ¢ o ¢ o o ¢ o o o o o« o 113
8.3.1 How To Delete A DO File o ¢ ¢ o o o o o o o o o 113
8.3.2 How To Delete A BA File .+ ¢ ¢ o o o ¢ « o o o o 112
8.3.3 How To DELETE A CO File e o o s e o e o e o o 117
8.4 HOW TO APPEND DATA TO DO FILE e o e s e e s e e o 122
8.5 HOW TO INSERT DATA TO DO FILE . ¢+ ¢ ¢ « o o« « « o 123
8.6 HOW TO DELETE DATA FRCOM DO FILE . . . e o e e . 124
8.7 LING IN ROM #08 . 125

USEFUL ROUTINES FOR RAM FILE HAND

CHAPTER

CHAPTER

* * L] L] L] *
(00 Q0 00 00 00 00 OO Q0 ~ =~ ~I ¢

L] * * L]

[

0 €O 00 €0 00 0O €O €O 00 6O 0O 0O
NOUIBWNERE BONR

RWONP

- L] - - * * * * * L)

WNEFE ULERWVWW NNE BOWONNRNONNN -

L 4 * L L]
*

*
SN

*

.
*

* * * * -
L] *
e

*

NVOOVVOVOOVVVOY VVVVVY VOVVOVOVOVOVVOVY O

. * * * [3 * ¢ o o

UMIVIUIRRREDE PRPpRAERWL WWOWWWWWWN -

*

10

1.1
10.1.1
10.1.2

MAKHOL .
LNKFIL .
MASDEL .
CHEAD . .
SAMPLE PROGRAM . o o .
Make A New DO Fx]e (ASCii Fi
Save Data Into DO File . . .
DELETE SCOME DATA FROM DO FILE

L J L 4 L
L 4
e ¢ e
L 3 * * L
* * . L
] [] L] L

[]
[]
L L L
.

* L] ® L] [
L d * * . *
L * L) * -

il

o (D o o o o o

DELETE DO FILE . . .
DELETE BA FILE .
MAKE NEW CO FILE
DELETE A CO FILE

Nt
[] * L] [] L] L] * * L] * . L[]
[3 * * ° * L . L] [] [4 . *
[3 L * L] * - ® L] ° L] . L]
L) L * L] L 3 * *® * L) * * *
L] * [] * * L] [] * [] * * L]

L
L]
[]
.

[]]
L] L]
L]]

LCD INTERFACE

OVER VIEW . . o e e e 4 e e
CONSTRUCTION OF LCD o o e o e o
1/0 PORT RELATED TOLCD . . « « .

BLOCK SELECT —-= PPI 81CS5 PORT A,

N

e o o o o o (D e o e o 0o Me o o

LCD COMMAND SET =« o o o o
Display ON/OFF.
Set Address Counter . .
Set Starting Page. . .
Select Address Counter Mode

Read Status --- Read The Status Of

Dl"lvef' . . * & e e

Write/Read Dlsplay Data e o o s o

SOFTWARE FOR LCD « « . & ¢ o o o

How To Initialize The LCD. o o o
Sample Program For LCD Initialization

How To Write A Character. . . .« o o
Ségple Program Of Writing A Character c
L L L * . * ® [] *

How To Set/reset A Dot On The LCD. o of e
Sample Program For SET/RESET Dot. -. .

How To Define A Character . o e e
Structure Of Character And Hou To Defin

* - [) *
L] L] L3 L]

*
]
L4
[]
*

a]

o o o (f)e o o o o —fo o o

L[]
L]
*

L]
egm
L]

*

L]

.
o]

.
.
.
.
.
.
.
.
.
t
.
.
.
.
.
.
]
.
.
.
.
e

How To Store The Your Qwun CG . « « +« + « o
AVAILABLE SYSTEM WORK AREA + ¢ &« o« « o o« o o

How To Use The CG In System RCM. . .

VRAM AREA IN SYSTEM Work Area . . .

* * L4 * * L J ® * * * * *

- L[] L] * L] L J . L] *

—!oo.ooo
J

. L] * * —ee L - *
ot

Reverse The Attribute Of The Specified Area.

KEYBOARD INTERFACE

THE KEYBOARD MATRIX &+ ¢« ¢ o o o o o o o o &
I/O Port For Keyboal"d ¢ e .
KEYBOARD STROBE --=---= PART A/B OF 81C55 .

® & © o & o ® & o e e o

* L] L] L L L] * .

D ¢ o o o o o

- . - L J * ® . - L 2 *

* [2 * - L 4 * * - > L - * [) * -

- - L 2 - * > - L 2 * *

- ® L L 2 L)) - [) - L 4 - L)

126
129
132
133
134
135
139
142
144
146
149
132

134
134
156

156

157
157

160
162

163
164
1835
165
166
148

169
172
172
177
177
179
188
189
182
183

184
186
186

CHAPTER

CHAPTER

CHAPTER

CHAPTER

16.1.3 KEYIN —==——- Read Keyboard Data

18.1.4. Keyboard Scanning . .
10.2 SOFT WARE FOR KEYBOARD OPERATION. .
18.2.1 How To Read The Keyboard

10.2.1.1 Sample Program Reading Keyboard
i1 ‘CMT INTERFACE

11.1 HARDWARE FOR CMT e o o s e o o o o
11.1.1 Uriting Opef.ationo ¢ o o o e e & o
11.1.2 Reading Operation. « « « + ¢« + « &
11.1.3 Baud Rate Generation. =+ « ¢ « o o
11.1.4 I/0 Port For CMT . . o o o o o
11.1.4.1 SCP =--—— SYSTEM CONTROL PORT .
11.1.4.2 PPI 81C55 Command Set . . .« .+ &
11.2 SOFTWARE FOR CMT &« &« ¢ ¢ ¢ o o o o o
11.2.1 CMT MOTOR CONTROL '+ ¢« o o o o o
11.2.2 Baud Rate Generation « « o« ¢« o« ¢« o
11.2.3 Write A Data To The CMT . « .« . &
11.2.4 Reading A Data From The CMT . . .
12 SERIAL INTERFACE

12.1 HARDWARE OF SERIAL INTERFACE

12.1.1 I/O Port * L] [] * L] L] * * * L * L]
12.1.1.1 Channel Select —— (System Contro] Port)
12¢101_02 UART MOde Contr'O] *® o & & o 6 o e o e o
120101.3 UART Status Read ¢ s o
12.1.1.4 Set UART Baud Rate (PPI 81C55 T1mer Sect1
12010105 UART DATA I/O Port o ¢ & o e e ¢ e o & o
12.2 SOFTWARE DESCRIPTICN. v ¢ ¢ ¢ ¢ ¢ o o o o @
12.2.1 = How To Initialize Serial Port . . « « « &
12.2.1.1 gamp1e Program ... How To Initialize SERI
ort + + " e e e s o
12.2.2 SEND A Data To The Serxal Port e o o s o e
12.2.3 Read A Data From Serial Porte =+ ¢ o o o o
12.3 AVAILABLE SYSTEM AREA. + ¢ ¢ ¢ o ¢ o o o o o
13 BARCODE READER

13.1 ELECTRIC SPECIFICATION . « . o + .+
13.2 - THEORY OF OPERATION

14 PARALLEL INTERFACE
14.1 HARDWARE SPECIFICATION

* * - [] -

- L 2 L] L[] * L] L] L 2 - [2 - *

[2 * L J * L) - - > * L * *

¢ © o o o o * o e o e o

¢ o 'e o o o o o o o o o

. L L] L 3 L]

* * > > > L) * * * * * *

Oooooo

s o o o Pre o o

O

® & o o o

® © & & & e e o+ o ¢ ¢ o

® © @ Ns e ¢ o o o

. e e o

® @& @& o @ e * e v e o o e o o o o

® 6 o e e @ o e o

L) - L] L]

187

188

189
189
190

193
194
195
196
197
197
197
199
199
200
201
283

206
287
207

289
210
212
213
213

214
217
218
219

221
222

223

223

1401‘1 PhYSica] Inter‘face O'F PC°8291A * & o o & o o o
14.1.2 1/0 Port For PRINTER Interface. . . « « « . + . 223
14.1.2.1 Port A —=--= Data Out Put Port For Printer. . . 223
14.1.2.2 Port C ---- BUSY,SLCT Signal Read o 224
14.1.2.3 SPC(System Control Port) --— STROBE Output

Port e &+ o o o o ¢« o 0 e o o e o e e o o o 224
14.1.3 Basic Theory Of Ur1t1ng A Data To Centronics . . 225
14.2 SOFTWARE SPECIFICATION « ¢ o o o o o o o o o s o o 226
14.2.1 How To Write A Byte To The Printer. .« « « « + « 226

CHAPTER 15 HARDWARE

15 * 1 SYSTEM SLOT [L [] * [L[] L * * L] * L] L] * L L] . . 229
15.1.1 Assignment Of Slgnal A%
150102 Exp]anatlon O'F Pln ¢ 8 e 6 % e 8 8 & s v e e s » 232
15010201 Function O'F Signa] o o 6 8 s & 6 8 o e o e o o 232
15 .1. 3 DC Characteristi C8 o o o o o ¢ o ¢ o o o o o o 236
1501 4 AC Chaf'acteristics S 6 9 e e & & 6 o e o e e s+ o 23?
15.2 MEMORY CONTROL CIRCUIT « « o ¢ o o o o o o o o o« o+ 248
15.3 I/0 ADDRESS « o o o e o o o o o o s e s s e o o 245
150 3 .1 Detail Information Abo t I/O ¢ o o o s e & e o o 247
1503\101 Resef‘ve Are@a o ¢« « ¢+ o v s s s s s s e s e v 247
150301.2 System Control & ¢ ¢ ¢ ¢ o ¢ o o o ¢ o o o o 247
15.301.3 Bank ContrO] ® o & 6 s+ e "6 e 6 e o o o o & e 2&8
15.3010& Bank Status S 6 6 e e & e e o & & s 8 o & s 249
1503-105 PIO 81C55 Address ® o s s 8 s 6 e s s o e e o 258
150301-6 UART Data I/O Port L I T S I N N A 254
1503010? UART COﬂtrO] Por‘t ® o 6 o & e e o s e o s o o 254
1503‘108 Ke>’b°ard Input e 6 8 & 8 8 8 8 e ®. s & s+ e s 25?
15.3.1.9 o o e o s o o s a o s o » o 257

LCDOC Address e o o

- 19-

CHAPTER 1
INTRODUCTION

The portable personal computer, PC-8281A is a unique
and practical computer. It has many special capabilities in
it. For example, it uses large LCD (Liquied Crystal Display),
CMOS (Complementary Metal Oxide Semiconductor) technology and
special built-in Software. :

The built—-in software features are very powerful ard
useful. But for using PC-8291A fully in particular purpose,
new Software written in Machine language might be requested.
One of the built—-in software, N82~-BASIC is very useful to make
a small utility, but it°s not enough to make a large size
‘utility, for instance, Spread Sheet or new Word Processor.

In order to support the programmers who want to make
such a large programs, and to support the programmers who want
to manage the harduare features directly, this document
describes ‘not only the detail hardwate features of PC-8201A,
but also the know-how to use these features without any
trouble.

The most important thing is ‘compatibility’. The

built-in Software features keep the promise in using the
memory, I/0 interface and interrupt functions. The built-in
Software checks many critical points at Power—on automatically
as far as you don’t remove the ROM #8. So if you break the
~ promise, PC-8261A begins ‘Cold start’ to initialize the all
contents in RAM. In this case, the important files and data
which you stored are flushed.

The promise for using PC-8261A°s features is described
in each chapter. Before making a your special program, please

- 11 -

INTRCODUCTION

refer to the corresponding chapteré. The previous INDEX will
help you.

, The built-in Software uses a small part of the
' PC-BZG;A's special features. With this manual, may you make a
super programs for your own purpose!!

_12-

CHAPTER 2
MEMORY MAP

2.1 OVERVIEW

The PC-8201A has the Follouing memory capacity. The
value specified with ‘Max’ means the maximum capacity that is
greatly expanded by adding RAM/ROM chips or RAM ;artridge.

ROM 32K bytes
(Max 44K bytes)-
RAM 16K bytes
. (Max 96 K ¢ 32k bytes x 3 bank)
2 banks are equipped on Main

board of PC-82861A and 1 bank
is provided with RAM cartridge.

And PC-8261A has three useful programs in the standard
$gM, ROM #9. These programs are (N82-)BASIC , TEXT and
LCOM. .

N82-BASIC: Microsoft BASIC, spec1a]12ed
for PC—-8281A.

TEXT: Simple and powerful word
processor
TELCOM: Communication program with

other digital computers
via RS-232C.

The simple memory map of PC-8281A is illustrated in

- 13 -

MEMORY MAP

the next figure. This illustration is a one of the standard
pattern. Refer to Chapter 15 to understand the bhardware
expansibility, the detail configuration of memory and how to
change the memory configuration.

- 14 -

MEMORY MAP

Bank 8 Bank 1 Bank 2 Bank 3
“XFFFF , ,
! RAM : ' I :
i STANDARD: H . H
SR B H i (RAM i | (RAM :
“XCo00 W2) PL #3) '
*XBFFF : I :
[| [}] 1]]
i RAM ' ' . '
i (option)! H oo :
oW ' H . '
~X8808 - ' :
“X7FFF _
i ROM ; { ROM i | RAM ' ; RAM '
i STANDARD! ! I I :
! #0 HER R 51 R ¥ 1 #3 '
e
Main memory . RAM cartridge

Fig 2.1 PC-8281A MEMGCRY MAP

The RAM #2 and RAM #3 can be located both low
address, from © <to “X7FFF, and high address, from
“X8088 to “XFFFF. This selection can be done by PORT
access. Refer to chapter 2.3. '

..15-

MEMCRY MAP

2.2 BANK SWITCHING ARCHITECTURE

The heat of PC-82081A is the Intel 88(C85, which 1is 8
bit processor and whose address bus is 16. Thus, the 89C85
can access 64K of memory at a time. In PC-8291A, however,
special memory access function called memory-bank switching is
supported. So the 64K barrier in 8-bit microprocessor can be
tricked in PC-8201A.

The RAM in the PC-8201A is divided into units referred
to as 'BANKS®. One bank can contain a maximum of 32K bytes of
memory, while the RAM can be expanded to hold a maximum cof
three banks. (RAM #1, RAM #2, RAM #3)

The RAM #2 and RAM #3 can be located in two different
positions, lower position is from "X0888 to “X7FFF and higher
position is from "X8868 to “XFFFF) And RAM #3 is detachable,
because it is provided in RAM cartridge. The bank-switching
is executed every 32K bytes. For the sake of this limitation
it is impossible to access the half part of RAM #1 and half
part of RAM #2 at a time. In other words, you cannot set up
the this kind of memory allocation, lower half of RAM #2, from
“X8088 to “XBFFF, and higher part of RAM #1, from ~“XC868 to
“XFFFF as 32K of memory. The variety of memory allocation is
illustrated and explained kindly in Chapter 15. The
explanation about the software specification in bank—-switching
is shown in the next section.

The RAM #2 and RAM #3 can be protected by a °‘PROTECT
SWITCH". The °PROTECT SWITCH® for RAM #2 is equipped at the
real panel. Refer to the page 1-3 in PC-8281A User’'s guide.
The RAM #3 has it at the side of the cartridge. But
unfortunately, RAM #1 has no such a protect function. When
you use this protect switch, you cannot use that RAM bank in
usual way, for instance, BASIC. Because, PC-8281A uses the
highest RAM area, from “XF388 to “XFFFF to save the current
status of PC-8201A every time.

All RAM chips consists of CMOS and are back-uped by
battery. All data and program files stored in RAM will be
kept, even if the power switch is turned off. If you make a
special utility for 2nd ROM or special RAM configuration, you
have to consider about this Power—down sequence. Refer <to
chapter 3 to understand the Power—off trap in RCOM #0.

- 16 -

MEMORY MAP

2.2.1 Bank Switching Hardware

The ‘bank—-switching®' is performed by QUT instruction.

The OUT instruction outputs 8 bit data to. the 1/0 port. The
port address and that bit assign of the 8 bit data is shown

beloq.

MSB

PORT ADDRESS “XA1 (0OUT)
Bank control

¢ 7 6 v 3 V4 3 2 11 1 6 |
Bit 7 -—- not used

Bit 6 —-—- not used

BitS —-——_ not used

.Bit 4 - not used

Bit 3 .--- High address

. ("X8088 - "“XFFFF) selection #2
Bit 2 —— High address

("X8080 - “XFFFF) selection #1
Bit 1 --- Low address

(7Xe808 - “X7FFF) selection #2
Bit @ —-— Low address

("X80988 - “X7FFF) selection #1

- 17 -

MEMORY MAP

High address #2 High address #1

e] Bank #0
e 1 not used
1 %] Bank #2
1 1 Bank #3
Low address #2 Low address #1
@ 2] Bank #0
%) p Bank #1
1 %] Bank #2
1 i " Bank #3

—18_

(RAM

(RAM
(RAM

(ROM
(ROM
(RAM
(RAM

#1)

#2)
#3)

#8)
#1)
#2)
#3)

MEMORY MAP

bank-switching, can be examined by IN instruction.
I/0 port.

The current status of the memory, the

instruction reads a 8 bit data from the specified
See next figure about the Port address and bit assignment of

the data.

-

MSB

#2
#1
#2
#1

PORT .ADDRESS “XABH (IN)
Bank status

status

of
The IN

V7 7 6 + 5 ¢+ 4 + 3 4+ 2 +1 1 e 1
Bit 7 - Serial interface status #2
Bit 6 -— Serial interface status #1
Bit S — Not used
Bit 4 —-— Not used
Bit 3 —=- High address (°X8868 - “XFFFF) status
Bit 2 —- High address (°X8888 - “XFFFF) status
Bit1 -—- Low address (°X8000 - "X7FFF) status
Bit @ -— Low address (°X8088 - “X7FFF) status
Serial I/F #2 Serial I/F #1
- 9 ‘ %] Not used
9 , * 1 SI0 port
1 8 Floepy
. disk port
1 i RS-232C port

High address #2 High address #1
Bank #8 (RAM

Not used
Bank #2 (RAM
Bank #3 (RAM

RE,EOO®
RPORO®

Low address #2 Low address #1

% 7} Bank #0 (ROM
] 1 Bank #1 (ROM
1 8 Bank #2 (RAM
1 1 Bank #3 (RAM

#1)
#2)
#3)

#0)
#1)
#2)
#3)

Refer to Chapter 12 about Serial Interface.

- 19 -

MEMORY MAP
2.2.2 Bank Switching Software

The bank—-switching capability is used in Menu mode.
The °BANK®' command, arranged in Function key 18 (Shift + F.S)
uses this function. This function falls into the Bank handler
routine, CHGBNK, “X7EAB. The CHGBNK checks the current bank
status, tests whether the bank really exists, save the new
bank # in BANK (“XF3DB), changes the bank status and jumps to
the address 8. Jumping to address O causes °COLD START' if
the bank has not ever used or the flag named FSIDSV has a
wrong value. (Refer to the section 3.2 Bookkeeping area.)
Otherwise, Jumping @ does 'WARM START".

In order to test the existence of the another bank,

CHGBNK reads the contents of the address, “XEBB8, in that

destination bank, modifies that value, restores 1it, and

re-reads it. If that bank were really in exist, the value
" read first and the value re-read last are not identical.

The reason why CHGBNK jumps 'into the address 8 is, you
might already notice, to set up the bookkeeping area. As
described in Chapter 7, all standard programs and operating
system uses this area every time to keep the current status.
This area contains very important pointers, flags and
interrupt routines. So without setting up this area, that
bank cannot be handled with ROM #8 correctly.

If you use a bank only with your - special application
program, which does not use the pointers on interrupt routines
in the bookkeeping area, you might think that you need not
care about the bookkeeping area. But please do not forget
that "SHIFT+F.S®' in menu level can change the bank any time.
I recommend that you will keep the current rules about
Bank-switching in ROM #8, and set up the bookkeeping area.

Refer chapter 4 °‘HOW TO USE 2ND/3RD RAM®' to get more
detail documents.

- 20 -

MEMORY MAP
2.3 GENERAL MEMORY MAPPING OF INTERNAL SOFTWARE USE

You know that the ROM #8 addressed from 0 to “X7FFF is
used for standard programs and operating systems. (Sometimes,
*standard programs represents BASIC, TEXT and TELCOM

especially, ‘Operating system' also represents "Menu’. But
there i? no e§p1icit border line between <the ‘standard
programs and operating system'. But I do sometimes use

these words to explain the concept of the PC-8281A°s built—in
software.) Also, Some parts of the RAM memory area are
reserved and used by that standard programs and operating
system. The memory map about the RAM area :is figured at next
page. The each part of the reserved area is pointed by
pointers in the ‘book-keeping area’, located at the highest
part of the RAM memory, from “XF388 to “XFFFF. And the
following 2 items are included in the book—-keeping area, too.

Interrupt routine
System work area

-21...

MEMORY MAP

~XFFFF

“XF388

Fig 2.2 PC - 8201A RAM AREA MEMORY MAP

Bookkeeping
area

User machine
stored area

File control
block area

2 Bytes space

! String area i<-
i (used) H
{ String area i{-
i (free) '
i Stack area 1{-
H 1<~
{ Free area H
H 1<~
{ Array stored |
\ area 1 {~-
i Simple H
i variable area i<-
i .CO files :
{ area 1{~
\ EDIT area :
i for BASIC 1<{=
i Paste buffer |
i for TEXT 1<~
i .00 files '
\ area <=

non-registered!
1 <{-CNULDIRI+1 “XF878+1

BASIC file

CHIMEM3] “XF384

CFILTABI “XFBé3

CMEMSIZ3] “XFA%A

CFRETOP] “XFABF

CSTKTOP *XF459
Stack Pointer

[STREND] “XFAES
CARYTABI “XFAE?
CVARTAB] “XFAES
[BINTAB] “XFAE3
CEDTDIRI+1 “F886+1
CSCROIRI+L “XFS7B

CASCTAB3 “XFAE1

-22 -

MEMORY MAP

i BA files H '

! area 1<-CTXTENDJ] “XFA88

i Current BA H

i file . <~-CTXTTAB] fXFASD

i +BA files] ' 4

\ area 1<-CBOTTOMI+1 “XFo8e+1

i 1 <-CBOTTOM3 “XF980

- 23 -

MEMORY MAP

Brief explanation about pointers which appear at the
previous page.

CBOTTOMI
CTXTTABI
. CTXTENDI
CNULDIRI
- CASCTABJ
CSCROIRI
CBINTABI
CVARTABI
CARYTABI

Bottom address of RAM

Beginning of the current BASIC program
End of the current BASIC program
Non-registered BASIC program

Lowest address of ASCII files

SCRAP file

Lowest address of binary files

Simple variable space

Start of array table

CSTREND] End of Array table
CSTKTOP] Top of stack space
CFRETOP] Top of string free space
CMEMSIZ] Highest location in memory

CHIMEM]

rf.

‘DIRECTORY STRUCTURE®
those chapters,

Highest memory available to BASIC
(The same as CLEAR’s 2nd parameter)

Chapter 5 "UNDERSTANDING THE RAM FILE CONCEPT®,
‘RAM ORGANIZATION®.
and detail

and

the concept of the files

explanation about the pointers are described.

- 24 -

MEMORY MAP

2.4 SAMPLE

VO OO VO VO Ve WO WS VO VO VO Ve We WO Ve

“-e

<< SYSTEM labels >>>

TITLE Bank switching program

This sample will only change the bank of
RAM addressed from “X8888 to “XFFFF.

"You had better check that the bank which

you want to switch really exists. And you
should save the next bank # at the
bookkeeping area, BANK.

Entry None
Exit None
Bank will be changed

Bank rotation #1 =) #2 =) #3 =) #1 =) ...

Reset address

SYSTEM EQU ~X2098 ;
CONTRL EQU “X8A1 3 Bank control port
STATUS EQU “X8A0 s Bank status port

; << Bank switching program >>)

CHECK:

NEXTB:

ORG “X81060 ; This program must be
$ stored between “X8000
;s and “X7FFF
DI ;s Disable interrupt
IN STATUS 3 Read current bank status
MOV B,A 3 Save current bank status
ANI “BOGBG1160 $ Pick up high bank status
;i only
ADI “BOBGBG1060 .4 Set nmext bank data
CPI “BEBOBB1609 s This pattern was not used!
JZ NEXTB : Set up next bank data
3 for lap around
MOV C,A 3 Save new bank data
MOV A,B 3+ Remember old bank status
ANI “B11110011 s Do not change bit data
: 3 without RAM bank data“
ORA c ;s Set new RAM bank
ouT CONTRL ; Select bank

-25-.

MEMORY MAP

EI
JMP

END

SYSTEM

- 26 -

Enable interrupt

We must update book
keeping area.

Jump “X0600B is the

best way.

CHAPTER 3
HOW TO USE 2ND ROM

When you want to make some programs stored in 2nd RCM,
there are a lot of matters should be attended and stored in
the 2nd ROM, The matters are interrupt jump tables and power

on/pouwer off sequences. You have to implement these tables
and sequences in order to process the ROM bank switching
smoothly. Otherwise, PC-8201A will run away on switching the

RCM bank. First half sections describe the interrupt
functions and power sequence.

And you have to know the rules to handle the files and
data in RAM, too. If you will use the routines in ROM #8 to
handle the RAM, you need not to care about the detail rules.
(You can get the information about the RAM file handling
routines in ROM #3@ at the Chapter 8 and another technical
manual that has already been available by NEC HE in Chicago.
Please request it if you have not gotten it yet.) The last
half of this chapter describes how to use the routines in ROM
#9 from 2nd ROM, ROM #1, (Hereafter ROM #1 sometimes
represents 2nd ROM.)

If you want to make I/0 control routines and store
them in 2nd ROM, you have to understand Chapter 9 to 14. IFf
you utilize the ROM #8°s I/0 routines, the last half of this
chapter and another manual will help you. .

- 27 -

HOW TO USE 2ND ROM

3.1 CONSIDERATION OF INTERRUPT

Basically, PC-8281A has some interrupt service
routines in that system. The main purpose of interrupts are
smooth processing in Power off trap, reading data from
Bar-code reader, communicating through UART(RS-232C) and using
Interval timer.

The interrupt table is located in the zeroc page area.

i POWER OFF TRAP i NMI] “Xe824 i
1 BARCODE READER i RST 3.3 i “Xg82C '
i UART i RST 6.5 : “X6834 :
i INTERVAL TIMER i RST 7.5 ' “Xee3C]

The Interval timer interrupt has the highest priority,
and UART has the second one. The lowest interrupt is used for
Barcode reader. The reason why the internal timer has the
highest priority is to scan the key and to count the
auto-power off counter for saving the battery power. PC-8201A
has the 'Auto-Power Off"' function'. Usually, this function is
executed after 18 minutes has past since last key stroke was
detected. (This interval can be set by the °‘POWER® command in
BASIC. Refer °"PC-8281A Reference Manual'.) The interval .time
is used to count this period.

N The interrupt hook table is located from “XF386 to .
XF394. And that table is constructed in the following fig.

Interrupt hook table in RAM area

“XF386 POWER ON SEQUENCE
“XF389 BARCODE READER INPUT SEQUENCE
“XF38C UART INPUT SEQUENCE
“XF38F TIMER SEQUENCE and KEY

_ SCANNING SEQUENCE
“XF392 POWER FAILURE SEQUENCE

- 28 -

|

HOW TO USE 2ND ROM
3.1.1 Powe
Th

turned off
the algoris

~ OFff Trap (ADDRESS “XACFA)

is interrupt is Non maskable. When power switch is
, this interrupt occurs. The following sequence is

m of this interrupt.

1: Disable the interrupt
2: Call hook table
3: Reset Key wait counter
4: Cancel Time counter
S: Out a data to the Auto power off port
é6: HLT
The detail bit assignment of <the auto power off port
following.
PORT ADDRESS “XBA (OUT)
81CS5 port B
Mese + 7 ¢+ 6 + 5 + 4 + 3 4+ 2 1
Bit 7 - RTS output
Bit é —— DTR output
Bit S —— BELL '
B8:Ring bell
1:Stop bell
Bit 4 —-— Auto power off |
8 :0ff
1:0n
Bit 3 —— DCD/RD select
Bit 2 ~ === Melody control
8:0n
1:0fF
Bit 1 -—— LCD chip select #1
Bit @ —— LCD chip select #6
rf.Chapter 9 to 15 about more detail information
this port.

- 29 -

is

of

SR

HOW TO USE 2ND ROM
3.1.2 Barcode Reader
(ADDRESS “XF389 with Disable interrupt)

This interrupt is using RST 5.5. If you do
barcode’ reader program, this interrupt should do
soon.

- 38 -

not use
"RETURN"®

2
:

HOW TO USE 2ND ROM

3.1.3 UART

(ADDRESS “X4EQQ with Disable interrupt)

This interrupt is using RST 6.5. This interrupt is

caused by UART.
interrupt occurs when the data in 6482 receive buffer is

available.

(Serial communication device 6482) This

The algorism of this interrupt is shown below.

MSB

NOUI_WN -

PORT ADDRESS

: Disable the interrupt

Call hook table

Read data from 6482

Read error status from 6482
Xon/Xoff control check
S1/S0 control check

Return to previous process

“XD8 (0UT)

UART control port

' é +S + 4 + 3 ¢+ 2 1+ 1 1 6
Bit 7 —— Not used
Bit 6 —-— Not used
Bit S —-——— Not used i
Bit 4 - Character length select #2
Bit 3 —-— Character length select #1
Bit 2 —-_—— Parity inhibit
@:Parity generation Check
1:Parity generation check,
Inhibit
Bit 1 —— Even parity enable
8:0dd parity
1:Even parity
Bit @ —-—— Stop bit select

B:Stop bit 1 bit
1:Stop bit 1.5 bit _

in case of DATA Length is S
1:Stop bit 2 bit

in case of DATA Length

is not S :

- 31 -

HOW TO USE 2ND ROM

PORT ADDRESS “XC8 (0UT)
UART data I/0 port - - -

MsB I 7

T 6 + S + 4 4V 3)V 2 +vo1 % 9
Bit 7 — Data #7
Bit 6 — Data #6
Bit S —-— Data #S
Bit 4 - Data #4
Bit 3 —— Data #3
Bit 2 -—- Data #2
Bit 1 —-— Data #1
Bit @ - Data #0

rf. Chapter 12 and 15 about more detail information
about UART. . :

- 32 -

HOW TO USE 2ND ROM

3.1.4 Interval Timer (ADDRESS “X1EBE With Disable Interrupt)

This interrupt is using RST 7.5. This is the
interrupt from interval timer. (Timer device 1998) This
interrupt is also used for the key scanning.

In the system’s initialization, the interval timer

which is controlled by 1998, is set up as 4m second mode. The
port for 1996 is illustrated below.

PORT ADORESS “XB% (0OUT)

Calendar clock (1998) control port

Msg: 77 ¢« 6 + S5 + 4 4+ 3 + 2 1 + @8 |

Bit 7 —-— Not used

Bit é —— Not used

Bit S —_— Not used

Bit 4 — Data output

Bit 3 ——— Shift clock

Bit 2 — Command output #2

Bit 1 —— Command cutput #1

Bit @ — Command output #8

Command #2 Command #1 Command #0

timing &4Hz
Timing 25éHz
Timing 2048Hz
TEST mode

s s
rRrO®
O ®

. In the initialization routine, the command is set up
as X85. It means 4dm second interwval.

rf. Chapter 15 for more information about 1990

' The following step 1is the algorism about interval
timer sequence. '

- 33 -

HOW TO USE 2ND ROM

Disable the interrupt

Call hook table

MaSk RST 705,RST 505

Reverse cursor character for cursor blink
Key matrix scanning

Return to the 1nterrupted process

OUNBPWNE-

_34-

HOW TO USE 2NO ROM
3.2 ROM SWAPPING METHOD

When you would like to use 2nd ROM, you must write the
following information into the' 2nd ROM’s special reserved
area. The special reserved area is located from ~XB8088 to
“Xee47. These area will be used for 2nd ROM starting jump
instruction and ID code, and the file name of 2nd ROM. This
name 1is displayed like a one of the RAM files on Menu screen
by 1st ROM, ROM #8. The following figure is the explanation
about 2nd ROM special reserved area.

ADDRESS CODE

“X8608 JUMP START 3 2nd ROM start address

“X80983 :

“X00824 RET ; Non maskable interrupt

“Xee2C RET ; Barcode reader interrupt :

“Xe034 RET s UART interrupt o

“Xee3C RET 3 Interval timer interrupt :

“X083F ; Reserved for RST interrupt §

“X0049 08 ‘A’ . :

“Xeoa1l 0B ‘B° s ID code for 2nd ROM i

“Xge42 0B “2NDROM’; File name which displayed in :
; the menu ' §

“X8048 START: $ 2nd ROM code

SPECIAL RESARVED ADDRESS

If these data are implemented correctly, the name will
appears on the 1st ROM's menu screen. So it's easy to switch
the ROM and execute the program in it. When you want to start 5
the programs in 2nd ROM from the Menu mode of ROM #0, move the ;

cursor to 2nd ROM’s file name on the screen. Then please
press return key. The system will fall into the 2nd ROM
program.)

-35..

HOW TO USE 2ND ROM .

3.3 THE METHOD TO USE 1ST ROM ENTRY FROM 2ND ROM

If you want to use the routines in 1st ROM from 2nd
RCM, at the first, you have to create a special routine in the
higher memory location of RAM (°X8008-"XFFFF) and use it. That
routine switches the ROM bank with using bank switching method,
and calls the routine in 1st ROM. It is very important for you
that the interrupts must be disabled before you change the ROM
banks. And in addition, as the following sections will <tell
you, you have to change the hook table for Power down interrupt
that was changed by 2nd ROM to restart the current process in
2nd ROM program at next power—on. With this hook table for 2nd
ROM, the power down in RCM #8 will cause the fatal error.
Power-off interrupt can not be prohibited. And you have to
consider about the contents of the routine which you will call.
The reason is that some routines in the 1st ROM routine may
enable the interrupts in some parts of their code even if you
disable the interrupts just before switching the ROM banks to
call 1st ROM entry. Therefore you had better change the all
hook tables in the current book keeping area. I suggest that
all hook table should be replaced with previout contents which
were stored by 1st ROM, just before calling ROM bank—-switching
routine ,and restored just after coming back from 1st ROM.

" The following progfam is the sample which useas 1st ROM entry
points from 2nd ROM.)

- 3 - | :

HOW TO USE 2ND ROM

3.3.1 Sample
TITLE Using 1st ROM entry from 2nd ROM

This sample will enable to use 1st ROM entry from

2nd ROM.
-Some routines in 1st ROM might enable interrupts,

so all interrupt
hook table should be replaced with RET code.
And restore them after done the 1st ROM calling.

Entry CENTRYJ:1st ROM entry address
Exit for return condition of 1st ROM

WO WE VO WO VO WO VO VO VO VO VO Ve we

< SYSTEM define label >>>
BNKCRL EQU “XBA1
STATUS EQU “X9A8

-e

Bank control port
Bank status port

we we

: << Main routine >>>
ORG “X8609 This routine must be stay

~X8008~-*XFFFF

e we

ROM1ST: SHLD WORKH Save register HL

LXI H,RET2ND { Return address from 1st ROM
PUSH H { Push stack top
LHLD ENTRY $ Pick up 1st ROM entry
o ; address :
PUSH H : Push stack top
LHLD WORKH ; Restore HL
PUSH PSW ; Save all register
DI : ; Disable interrupt
IN STATUS 3 Get current bank status
ANI “B11111118 : Switch 1st -ROM data set up
ouT BNKCRL ;: Bank select

' ; Now "“XB888-"XT7FFF are

;s 1st ROM

EI , s Enable interrupt
PGOP PSu H
RET : 3 Jump lst ROM entry

;3 <K Return from 1st RCM >>>.

RET2ZND: PUSH PSu Save all register .

IN STATUS ;1 Get current bank status
ORI “BBQBBI6BB1 ;s Switch 2nd ROM data set up
ouT BNKCRL ;s Bank select
; Now “XB8B88-"X7FFF are
. ;s 2nd ROM
POP PSW i Pick up all register

- 37 -~

HOW TO USE 2ND ROM

RET H
;s <<< SYSTEM WORK AREA >>>
ENTRY: OW “X0000 ; 1st ROM entry address
WORKH: DW ~X8009 s HL register saving area
END

_38-‘4

HOW TO USE 2NO ROM

3.4 SEQUENCES IN THE 2ND ROM

1. INITIALIZE

By -

This sequence sets up = [SPJ1(Stack Pointer),
power—on trap and other interrupt routines. Then it
copies the book—-keeping area and system area. finally
some peripherals will be initialized by this routine.

2. RETURN TO MENU

At the first, this sequence selects the standard
RAM, RAM #8 and resets the power—-off trap. Then it jumps
to 1st ROM’ s menu mode.

3. POWER DOWN

: When power 1is turned off, the control is
transferred to this sequence. In this sequence, you must
save all registers and circumstances which should be saved

. in the stack. So the stack—pointer is most important to
. resume the current processing on the next power-on.

The RAM bank number is always stored in RAM #0. Cn
turning on, the 1st ROM and RAM #8 is selected
automatically. And the bank—-switching procedure will be

called 1in Power on sequence if the number of the RAM bank
was not identical to the RAM #8 in the power down
sequence. After changing the RAM bank, all registers will
be restored and pending procedure will be resumed.
Therefore in the stack, the address of the process which
was abandoned by Power down trap should be stored.

In addition, in order to resume the abandoned process
with 2nd ROM, you have to do special power on/power off
sequence. In power off trap, you should the set the start .
routine of the special power—on sequence which switches
the ROM bank. I recommend +to use the hook, “XF38F.
Usually, “JUMP to POWER FAIL SEQUENCE® command is stored
here. In 2nd ROM, however, you have to rewrite this hook
table and call the special power down routine here. In

- 39 -

HOW TQ USE 2ND ROM

it, the address of special power—on routine on the stack.
In this case, the following information should .be stacked
before "HLT®' command ig executed.

resuming address

starting address of
the ROM switching
routine

Contents of Pointers .
. {-- [STAKSVI]

CSTAKSV] keeps the SP’s value at "HLT".
Fig 3.1

POWER ON

At the first, the initializing routine in ROM #0Q
checks the RAM bank number in BANK (°XF3DB) when power-off
was executed. When power—off was done in non—standard RAM
bank, RAM bank=-switching routine is called and switched.
Then, the registers’ contents will be restored. If the
address of the process which should be resumed uwas
stacked, the address will be picked up and executed. When
the pouwer—-down was detected in ROM #1, the address of the
special ROM switching routine ought to be stacked above
the address of the process should be resumed. Therefore,
after juitching the ROM, the abandoned process will be
resumed.

- 48 -

HOW TO USE 2ND ROM

control

routine

The following figure are the general 2nd ROM

sequence.

mode of 1st

MENU

(== ow=-

- select 2nd ROM

e eSS e Se wm e G BEm v EE o W B B. B e Am S mm -

i-Return

RETURN
Ay
POWER ON .

+=Turn off power switc

Main routine of 2nd ROM'
PCWER DGOWN

INITIALIZE

- wme - a- - e - -—w mem -

pouer switch

1=Turn on

~

——————D

OFF

POWER

- 41 -

ST TR R

HOW TO USE 2ND ROM

3.5 SUMMARY -- IMPORTANT NOTICE

If you want to make 2nd ROM program, you should take

care of the following manner.

i.

Interrupt vector

If you do not want to use interrupt, all interrupt
table should be set with only °‘RET' code, But I suggest
you that you had better use interval <timer interrupt,
because of saving the battery pouwer by using auto power
off function. The counter for thias auto power off
function 1is counted by this interval timer interrupt. If
you do not use this function, the battery consumpticn may
be more larger than now.

Bank of RAM

Do not switch the ROM bank when PC, Program
Counter, points a routine in that ROM. You can guess the
reason and it‘’s not so hard to imagine these bank
switching will cause the fatal problem for system. At the
worst case, the all files which you stored will be lost.
And also you should be careful in stack area, too.

PC-8201A book keeping area
The book keeping area are very important for this

system, S0 you never change that area without careful
consideration. Please read Chapter 7 "BOOK KEEPING AREA®.

Power on/off séduence
Please use power off interrupt to detect the power

down. I suggest that you had better use the real time
interrupt service to poll the power down signal.

- 42 -

HOW TO USE 2ND ROM

: If you want to use 1st ROM entry from 2nd ROM, please
take care of the following point. The all routines rewrite
some work area sometimes. So, if you use 1st ROM entry from
2nd ROM without understanding that routine’s internal
specification, the system might be crashed. In addition,
interrupts and 'stack area are other important points. Refer
to 2.3 'The method to use 1st ROM Entry from 2nd ROM® and its
sample program. _

43

ROW TO USE 2ND ROM

3.6 SAMPLE

TITLE 2nd ROM sample header and useful routine

; < SYSTEM define label >>>

BANK EQU *XF308 $ Bank save area
ATIDSV EQU *XF382 H

PWHOK EQU *XF386 3 Power on hook table
RST35 EQU *XF389% $ Rst 5.5 hook table
STAKSV EQU “XF9AE :

AUTOID EQU “X9Cces H

SAVSTK EQU “XFADo 3

STATUS EQU “XA8 : Bank status

BNKCRL EQU “XA1 ; Bank control

PWPORT EQU “XB8 3 81CSS chip select
PORTB EQU “XBA $ 81CSS port B

FREE EQU D ararars You must set your ram

>e we

free portion address
3 <K Main routine >>>

ORG “X08098
START:

JMP INIT 3 2nd ROM start address

ORG *X0824 ; Non maskable interrupt
;s table

JMP POWER ;s Power down trap

ORG - “Xe@2C s RST 5.5

JMP BARCOD $ Barcode reader interrupt
3 table :

ORG “X8034 s RST 6.5

JMP UART s UART interrupt table

ORG *X883C s RST 7.5

JMP TIMER ; Timer interrupt table

ORG “X0049 3 ID code for 2nd ROM

DB ‘AB”° ;3 AB is ID code for 2nd ROM
a:] ~ “2NDROM’ File name which

we weo

displayed in the MENU

3 <K Initialization of 2nd ROM program >>>
INIT: LHLD SAVSTK ;1 Set stack pointer

- 44 -

HOW TO USE 2ND ROM

- SPHL '
CALL SETTRP

CALL HINIT

e We Ve we we weo

JMP MAIN
H
s <K Hardware initialize routine
HINIT: RET :

<<<-MAIN ROUTINE OF 2ND ROM >>>

: e VO W Ve e

AIN: :

3 <K Set up hook >>>

3 Set up hook table for 2nd ROM

SETTRP: MVI A, "B80G8B80BGG1 :
ouT BNKCRL ' H
LXI H,DTBL H
LXI 0, PWHOK H
MVI B, TBLEND-DTBL H
CALL COPY 3
LXI H, TBLHOK 3
LXI D,FREE H
LXI B, HOKE-TBLHOK :
CALL COPY :
RET H

s COed <- CHLJ

COPY: MGV A,M 3
STAX - D H
INX H 3
INX B H
DCR B :
JNZ COPY 3
RET :

*
?
*
»

Set hook for resume
2nd-R0OM’s program,

and other routine into RAM.
Hardware initialization
Goto main routine

>

Main routine

Select standard RAM

Select!
Set some codes into RAM

for power on segquence

Return code table
Free area of RAM portion

Set length

Read CHL3J]
Save [DEJ]

Next address set
Decrement counter
Loop until done

The following code will be copied in RAM

3 portion for re-power on sequences
these part are interrupt hook table.

DTBL EQU $
MVI A, “B080808a1 :
ouT BNKCRL ;

- 45 -

These cocde will be
copied intoc RAM
Bank select!

HOW TO USE 2ND RCM

JMP PWON - f Jump power on trap

BANKI: DS 1 ' H
TBLEND EQU $ ’

The following code will be copied
in RAM portion for return 1st ROM

: .
TBLHOK EQU $
RETSB: XRA A $ Clear A :
ouT BNKCRL s Select 1st ROM and
$ standard RAM
JMP “XB0699 ;3 Return!
HCOKE EQU $
3 << RETURN >>>
RETURN: MVI A, "BoBBB0BG1 $ Select standard RAM
ouT BNKCRL H
MVI A, "BP6BB0G00 H
STA BANK H
LXI H, “X80868 { Reset
SHLD ATIDSV H
LXI H,RTBL $ Rewrite code table
LXI 0, PWHOK 3 Interrupt hook table set
LXI B,RTBLE-RTBL 3 Set length
CALL COPY 3
JMP RETSB $ Return to 1st
’»

ROM’s menu mode

The following code will be copy
in standard ram portion.

TBL EQU $
RET
NOP
NOP
EI
RET
NOP
RTBLE EQU $

;3 <K Power on >>>
PWON: caLL HINIT

A ve ve we we

Power on hook

RST 5.5 hook

-e

LDA BANKI-DTBL ; Select old RAM bank
ouT BNKCRL H

LHLD STAKSV ; Restore stack pointer
SPHL H

POP PSW $

POP B H

- 46 -

HOW TO USE 2ND ROM

POP s ;
POP H ;
RET ;

3 <K POWER DOWN TRAP >>>

POWER: PUSH PSW H
"IN PWPORT H
ANA A H
JM NTPWFL H
POP PSW 3
DI :

PUSH H
PUSH D 3
PUSH 8 H
PUSH PSUW ;
LXI H, “X00088 H
DAD SP H
SHLD STAKSV H
MVI A,BFFH H
STA PWRINT H
IN - STATUS H
’

remember

?
MOV B,A 3
MVI A, "BBGB00OGO1 H
ouT BNKCRL 3
MOV A,B H
STA BANKI-DTBL 3
MVI A, "Bo8BBBLRo1 H
ouT BNKCRL H
MVI A,Q H
’
STA BANK :
LXI H, AUTOID s
SHLD ATIDSV :
IN PORTB 3
ORI “Bo00198900 H
ouT PORTB 3
HLT 3
NTPWFL: POP PSW :
L

RET
; {<{< BARCODEREADER interrupt >>>
BARCOD RET ;
3 <LK UART interrupt >>>

- 47 -

Resume old program

Read power down port
Check
No power down

Disable interrupt
s Save HL

Save DE

Save BC

Save AF

Now I know stack address
Save stack

Reset interval timer
counter

Set up for next power on
Save current RAM bank status
WVhen power on resume,

this and select RAM bank.
Save it

Select standard RAM
Select!

Resave old status

Select RAM bank 1

Set up to come back
to 2nd ROM

Never go on

Return soon

HOW TO USE 2ND ROM

UART RET $ Return soon

s <LK Interval Timer interrupt >>> :
Pick up timer value

TIMER: LDA PURINT :
DCR A 3 ‘Decrement!!
STA PWRINT $ Save it
RET H
3 <K System work area >>>
PWRINT: DB “X8FF ' ;s Timer counter n %* 1/256Hz

END

- 48 -

CHAPTER 4
HOW TO USE 2ND/3RD RAM

WUhen you want to change the bank of RAM, the most
simple method is to do OUT instruction and to jump “X8888 for
warm start. Because book keeping area management is too
difficult to do by yourselves, I think. But if you would not
like to do warm start, you must manage the book keeping and
system parameter by yourself and use the special RAM bank
handling routine. You can easily guess that when the bank of
RAM is changed, PC, the program counter must stay lower than
*X7FFF. Because bank switch is completely change the code of
.RAM which address “X806088 to “XFFFF. But the area from “X8 to
“X7FFF is used for ROM. The only one way is to make a special
RAM bank switch routine in all RAM banks with same address.
The following illustration will help you to understand. this
curious method.

i PCP HL i+ POP HL i 1Pick up return address
¢ MOV A,NEXT 1 I MOV A,NEXT ! ;set next bank status
I ouT “XAl ! 1 OUT “XA1l i 3change bank
i PUSH H 1+ PUSH H i 3 set return address
i RET HE i sreturn to specified addres
RAM #0 RAM #1
Fig 4.1

Same routine is stored in the same position of 2 RAM banks.

.Refer to next
section to write a program at another bank.

-A?—

HOW TO USE 2ND/3RD RAM

In addition you must take care of the STACK POINTER ,toco.

- S8 -

HOW TO USE 2ND/3RD RAM

4.1 READ AND WRITE TO ANOTHER-RAE‘BANK

These are two methods to read /write another bank of
RAM. The first is more simple than second one. But the first
method is some limitation of that performance, because this
method 'uses ROM #1. And the second method is more complex,
but this is more powerful. The size of the second method is
longer than the first one.

4.1.1 Method 1 CUSING 1st ROMJ

These are very useful routines in the 1st ROM. These
are GETBNK and PUTBNK.

4.1.1.1 GETBNK C"X7EEC3]

This routine reads one byte from other banks of RAM.
The GETBNK routine temporarily changes the specified RAM bank,
reads a byte pointed by CHL1, and returns to the original
bank. Interrupt should be disabled before calling the GETBNK
routine.

Entry CBJ = Bank number
“X88:Main bank
“X@8:Bank #2
“X@C:Bank #3
CHL] = Address which byte to read

Exit D] = Byte data which read

Al tered registers

CAl,CC3,CD],CF3

- 51 -

HOW TO USE 2ND/3RD RAM
4.1.1.2 PUTBNK C~X7EEB]

The PUTBNK routine writes one byte at the specified
address pointed by [HL] in the specified RAM bank. Similar to
tihe GETBNK routine, original bank will be selected after
writing that data. Before using the PUTBNK routine, interrupt

should be disabled.

Entry [BJ1 = Bank number
“X88:Main bank
“X08:Bank #2
“X@C:Bank #3
CHL] = Location where the byte is stored
"[D] = Byte data to be stored

Exit None

Al tered registers
CAl,CC1,CF].

_52-

HOW TO USE 2ND/3RD RAM

4.1.2 Method 2 CUSING YOUR ORIGINAL CODEJ

When your code 1is located in upper address
("X889B-"XFFFF), and you want to read/write a lot of data in
another bank of RAM, you had better change the target RAM bank
at the lower position of the memory.

(1) Your code is in RAM #1. And data you want to
read or write is in RAM #2.

“XFFFF -
i Your | | RAM
{ code | | #2 H
~X8008 :
. *X7FFF ~=————e—e
i ROM
“X80B8 ~——m———-
(2) Change the Bank.,
*XFFFF ——————e=<
i Your |
1 code |
H § (=
“X8608 ————————e iHandle
"X7FFF ==——————— | some
' ! | data
i RAM #2: |
H 1~
“0808 —————————
Fig 4.3

- 83 -

HOW TO USE 2ND/3RD RAM

(3) Then change again into previous
Bank configuration.

In this case, you have to disable to all interrupts
before changing the BANK.,

- 54 -

HOW TO USE 2ND/3RD RAM

When your code is ~ located lower addres
("XB0BB-"X7FFF), for -instance, running a program in 2nd ROM,
please use next method to handle the data in other RAM banks.

(1) The program in 2nd ROM is running with RAM #1.

“XFFFF
istandard: | ' .
H ! I RAM '
i RAM Py #2 '

~X8600 -

“X7FFF
' 2nd H
i ROM H

“X8000

Fig 4.4

(2) Read or Write RAM #2 by bank switching
during all interrupts prohibited.

“XFFFF .
i RAM i | RAM H
HE ¥ \ 1standard |

“X8000

“X7FFF
i 2nd '
{ ROM :

“X08809

Fig 4.5

(3) Switch again, and resume the previcus processing.

- 55 -

IRD RAM

TITLE Read Urite routine for another BANK of RAM

This sample will access another bank of RAM.
There are two routines in this source program.
One is having access in byte by byte by using

The another one is to access in block of data to use
‘special bank switching.

In the architecture of bank, bank 1 (Standard RAM)
13 not able to be switch lou address
("X008B88H~-"X7FFF).

Entry HL:Address to be accessed
C :Bank number
Exit B :Data which be read
Entry HL :Address to be accessed
C :Bank number
Exit B :0ata to be written
Entry HL:Start address to be changed
A :Bank number
DE:Start address in current bank
BC:Byte length to be read
Exit None
Entry HL:Start addreas to be written
A :Bank number
DE:Start address in current bank
BC:Byte length to be written
Exit None
Bank number
Bank #1 (Standard RAM) :7°X80
Bank #2 (RAM #2) : X088
Bank #3 (RAM #3) : " X8C

{STEM label define >>>

EQU “XgAl s Bank control port
EQU “XeA0 ; Bank status port
ORG ~X90090 s This program can be located
s any place
s This switch should be change
' $ according to the situation
EQU -1 + High address ("X8Q088-"XFFFF)

-56_

HOW TO USE 2ND/3RD RAM

SLoW EQU %]
;3 <K Byte access routine >>>
BYTER: DI
IN STATUS
PUSH)
IF SHIGH
ANI “B11118011
ORA c
ELSE
PUSH PSW
MGOV A,C
RAR .
RAR
MOV C,A
POP PSW
ANI “Bi11111168
ORA C
ENDIF
ouT BNKCRL
MOV B,M
POP PSW
cuT BNKCRL
EI
RET
BYTEW: DI
.- IN STATUS
PUSH PSU
IF SHIGH
ANI “B1i111@0811
CRA C
ELSE
PUSH PSW
MOV A,C
RAR
RAR
MOV C,A
ANI “B11111100
ORA C
ENDIF
ouT BNKCRL

- 57 -

e Ve weo

e We we .

We We WO VO VWO WO Ve e we

. we we we WO We We “eo WO W

e we we

“e we Ve we Ve we we we

Low address (“X889@-"X7FFF)

Disable interrupt
Read current bank status
Save current bank status

Clear high address of Bank
switch
Set new data of bank

Save current bank
Pick up new bank data

Shift 2 bit

Reatore bank data

Pick up current bank
Clear low address of bank
switch A

Set new data of bank

Select new bank!

Read data from some bank
Pick up before bank
Select before bank
Enable interrupt

Disable interrupt
Read current bank status
Save current bank status

Clear high address of bank '
switch
Set new data of bank

Save current bank
Pick up new bank data

Shift 2 bit

Pick up current bank
Clear low address of bank
switch 4

Set new data of bank

Bank switch!

HOW TO USE 2ND/3RD RAM

BLOCKR ¢

switch

NEXTR:

BLOCKW:

MOV M,B

POP PSW

ouT BNKCRL

EI

RET

;s <K Blgck access routine >>>

I

PUSH B8

MOV C,A

IN STATUS

STA CURBNK

IF SHIGH

ANI “Bi11110011

ORA C

ELSE '

PUSH PSW

MOV A,C

RAR

RAR

MOV C,A

POP PSW

ANI “B11111190

ORA [

ENDIF

POP B

LDAX D

MOV M,A
INX 0

INX H

0CX B

JNZ NEXTR

LDBA CURBNK

ouT BNKCRL

EI »

RET

DI

PUSH B

MOV C,A

IN STATUS

STA CURBNK
IF SHIGH

ANI “B11110011

- 58 -

we We weo e VO we Ve we VO VS e wWe we

o W& we VO we WO o

T we

‘e We we We we .o we we we e wWe We we wWe we e

Write data

Pick up before bank
Select before bank
Enable interrupt

Disable interrupt

Save length

Set up bank number

Read current bank status
Save current bank

Clear high address of bank
switch
Set new data of bank

SAve current bank
Pick up new bank data

Shift 2 bit

Restore bank data

Pick up current bank
Clear low address of bank

Set new bank data
Pick up length

Read data
Write data

Next position of data
Decrement counter
Loop until done

Set previous bank
Select previous bank
Enable interrupt

Disable interrupt

Save length

Set up bank number

read current bank status
Save current bank

Clear high address of bank

HOW TO USE 73RD RAM

Swit

IRA c

LSE

'USH PSu
-'QV A,C

AR
" AR

oV C,A
'oP PSW
NI “B1111110@
switch

JRA c
INDIF

°0P 8

NEXTW:

MOV A,M
STAX D

INX H

INX 0

DCX B

JNZ NEXTW
LDA CURBNK
ouT BNKCRL
RET

3 <K &stem work area >>>
CURBNK: DB - “X08

END

- 59 -

Ve VO We WO Ve Ve we -e

-e

VO WO WO Ve W we

we We we

->e

Set new data of bank

Save current bank
Pick up new bank data

Shift 2 bit

Restore bank data

Pick up current bank
Clear low address of bank

Set new bank data
Pick up length

Pick up data
Write data

Next position of data
Decrement counter
Loop until done

Restore previous bank #
Select previous bank

Current bank data

CHAPTER 3
UNBERSTANDING THE RAM FILE CONCEPT

S.1 SUMMARY

Usually, the RAM files are controlled by the ROM #9,
settled in ROM socket #0 at the shipment. There are many
rules to use the RAM file. Unless you replace this ROM #4
with your cwn ROM, ROM #@ checks the RAM file organization and
pointers in the bookkeeping area sometimes, even if you don’t
use BASIC, TEXT or TELCOM. (For instance, at Power on and
"Bank’' command in menu.) If you ignore the standard rules for
RAM file handling, ROM #8 will flush not only the files which
were made by your own application program ,but also the files
which were made by BASIC and TEXT in ROM #38. In order to save
your files from such kinds of accidents, please read follouwing
chapters about .the RAM file handling and understand the
standard rules in PC-8201A.

The two situations were considered for this section.
Someone wants to handle RAM files with the machine language
subroutine in the BASIC mode. In this case, opening the file
will be done by a BASIC command, OPEN. And the file will be
closed and deleted by CLOSE and KILL command in BASIC. So the
machine language subroutine will make wup the lacking
facilities in BASIC commands. For instance, Insert a data at
the middle of the opened file. In this case, you had better
care about a few pointers only. You needn’t know the
directory structure. '

But another person might try to make a his (or her)
original application program without using BASIC. . He (or She)
. might open a file, save data, append data, insert data, delete
data and erase a file with his (or her) own application. In
this case, the name of the data file should be registered by
that application program. So that programmer need to know the
Directory configuration and many parts of the pointers
playing.

- 68_—

UNDERSTANDING THE RAM FILE CONCEPT

]

This section is written for supporting both of them.
The programmer who wants to make a original application
without BASIC, needs much more information than a user who
uses BASIC. But too much data sometimes confuses a novice
programmer who wants to make a subroutine for BASIC main
program. After 1long consideration, I decided to obey the
famous common saying, 'The greater serves for the lesser'.
Therefore 1 serve everything what I know. Please find what
you want to know in the following section.

In these chapters, 1 tried to describe each section

independently. You, however, might meet unknown words
sometimes. Please refer to another section or another chapter
at that time. I hope you will make many good application

programs with this document.

- 461 -

UNDERSTANDING THE RAM FILE CONCEPT

S.2 WHAT IS RAM FILE?

In PC-8281A, you can have many files in RAM area at a
time ,like files on the floppy disk. The files are classified
inte three suffixes:.DO0(cument) ~,BA(sic) and .CO0(mmand).
Hereafter .DO(cument) file is abbreviated DO file, BA(sic)
file is BA file, and .CO(mmand) file is CO file. aAnd
sometimes the word "ASCII file' is used in place of "DO file'.

5.2.1 DO File (ASCII File)

) The DO file is created by BASIC, TEXT and TELCOM. Of
course, you can load. a DO file from I/0 in menu mode. In
BASIC, the °‘OPEN® command handles the DO file. The OPEN
command with'FOR OUTPUT® option makes a new 00 file. OPEN
with °FOR APPEND' opens the DO file 'in order to add the data
after the last data that has already been entered. UWhen there
is no file whose name is same as the specified in the ‘OPEN’
with °"FOR APPEND®, that OPEN command works as the OPEN with
FOR QUTPUT. The OPEN with FOR INPUT opens the specified file
to be ready for sequential reading. : ' ~

The °SAVE® command with °,A" option or °"SAVE®' command
with the file descriptor followed the suffix, ".D0' stores a
BASIC program as a DO file. This DO file 1is, sometimes,
called as ASCII (saved program) file. (Note: A SAVE command
without ',A" option creates a BA file.) In this case, the
BASIC program in the BASIC files area is saved into the DO
files area in the ASCII format. So you can read it in TEXT
mode.(*'SAVE' command without °",A° or without the suffix, '.DC°
oenly registers the file name with the suffix, '.BA" and
changes some pointers. It does not make a new file. Please
refer to next section about BA files. And I think almost
BASIC interpreter have this "ASCII save function®' for the disk
files. Refer to BASIC reference manual if you have another
disk top personal computer’s manual.)

- 82 -

UNDERSTANDING THE RAM FILE CONCEPT

- e
- --

i Upper
i DO files :
: { | Lower
i non-registered: V
i BASIC programi
H or H
i saved BASIC '
i program H
i "A.BA° '
(== TXTTAB

Type BASIC program in BASIC mode.
Do °"SAVE' command.

SAVE °TEST",A
or *
SAVE °‘TEST.DO®

Upper

D0 files

TEST.DO 1¢{== New DO file
: ' is inserted

H iLower
non-registered: V
BASIC programi
or
saved BASIC
program
'A.BAC

- - e= —- S mw m- w-

-— <-- TXTTAB

Fig 5.1 SAVE with ".D0" or ',A"' option

- 63 -

i, ey

UNDERSTANDING THE RAM FILE CONCEPT

There are 2 type of hidden DO files in PC-8281A. One
is the °SCRAP® file used in TEXT, and another is the °"EDIT®
file used in BASIC. The screen oriented text editor in
PC-8201, named TEXT, has wonderful functions called °"CCP°’.
The CCP functions mean SELECT, CUT, COPY and PASTE. (The
detail information about these functions are explained in the
PC-8261A user’'s guide.) The CUT command or COPY command after
SELECT command makes a temporary DO file. This DO files can
be invoked by PASTE key many times. Though this file cannot
be found in menu level, this file will be kept until next
SELECT-COPY or SELECT- CUT u11] be executed and is not broken
by the PASTE key.

And more good feature is in this DO file. Since the
contents of this DO file is treated as the data from keyboard,
this file can be used in BASIC. After saving a part of a file
in SCRAP with SELECT-COPY function, return to Menu, and invoke -
BASIC. The contents of this “SCRAP® file will appear by
"PAST' key. (In the PC-8201A user’s guide, this temporary 00
file is called 'PASTE buffer'.) .

Another one, ‘EDIT"® file, is created by EDIT command
in BASIC. The EDIT command in BASIC falls into the TEXT
editor with the BASIC file. At that time, the BASIC program
is translated in to ASCII format file, "EDIT', and original
BASIC file is killed. This file is erased when the EDIT mode
is finished by double ESC or F.S5, converted into BASIC file
and saved. So no one can find this file at the menu level.

The DO file usually consist of the "ASCII' characters.
And you cannot use the 3 Control Characters, NULL (3),
Control-Z (26) and Back Space (127). (The ‘Control-Z° is
sometimes abbreviated as "“Z°'.) The Control=Z is used as the
End of D0 file. So if you store it as a one of the data in
the middle of the DO file, the standard programs, BASIC, TEXT
and TELCOM ,will regard that Control-Z as the End of that 0O
file. The data after that Control-Z will be lost. Otherwise
the NULL is used to fill the hole dug by MAKHOL. After
copying or inserting the data in to the hole, some routines
tries to find the end of the data by finding the NULL. Then a
routine squeezes the NULLs. Therefore the NULL in the middle
of the DO file might cause the seriocus problems. similarly,
the Back Space has special meaning in DO file. Please don’t
use there three Control characters in the DO file. BASIC’ s
SglzT]# command cannot save these control characters in to the

11&. .

NOTE: MAKHOL and MASDEL are name of the routine

- 44 -

UNDERSTANDING THE RAM FILE CONCEPT

stored in ROM #G. hefe; to ‘Useful Routines for RAM
file handling in ROM #G8°.

ex. When D0 file is made. in PC-82081A

1.
2.
3.

TEXT always creates and modifies DO files.
SAVE command with ',A' creates a DO file in BASIC.

UPLCAD and DOWN LOAD sends or receives a DO file
through RS-232C in TELCOM.

DO file can be saved or locaded from CASSETTE and
RS-=232C in MENU. '

OPEN with °"FOR OUTPUT® registers the file name and

insert only End of file character as the DO file
in BASIC. .

-65_

UNDERSTANDING THE RAM FILE CONCEPT

5.2.2 BA File
The BA file is made in BASIC mode or made by LOAD

function in Menu mode. There are two types of BA file in
PC-8201A. One is a "saved® BASIC. program, and another is
‘non-registered’ BASIC program. Sometimes the

‘non-registered’ is called the ‘un-saved’ BASIC program,
because ‘un-saved’ will make sense more than 'non-registered’
for a person who knows BASIC very well. The BASIC program
typed Just aFter selecting BASIC mode in menu level, is called
‘non-registered’ BASIC F11e, since the name of the program has
not been registered in the directory area yet. But after
executing 'SAVE®' command in BASIC mode, that ‘non-registered’
BASIC program becomes a “saved’' BASIC program. (In the point
of view, 'SAVE® command in BASIC, the word ‘un—-saved’'. and
'saved’ are suitable, [think.) The "SAVE®' command in BASIC
‘'register’'s the file name and the starting address in the
directory area. Then the file name can be seen on the display
screen of the MENU or by 'Files’' command in the BASIC mode.

Meanwhile the °‘LOAD’ function in MENU can create a
‘saved’ BA file directly. The °LOAD' function can read a
BASIC program from the cassette, and can ‘register’' its name
in the directory area. So after ‘LOAD’'ing in Menu, the
program name appears on the Menu screen.

ex. The flow diagram of making BASIC program
1. Selegt BASIC in menu level

2. Type BASIC program

18 PRINT °HELLO®
20 END

3. In this point, this BASIC program is called
‘non-registered’ program.

4. If you return to menu level now, this program is
reserved. You cannot find this program in Menu
mode in this time. Next time you select BASIC in
menuy mode, LIST command shows you this program
again. This program will be kept unless you do
NEW command, LOAD ASCII saved file in RAM or LOAD.
a file through 1/0, cassette and RS=-232C.

S. Do 'SAVE® command.

SAVE °TEST'
or

_66.-

UNDERSTANDING THE RAM FILE CONCEPT

SAVE ‘TEST.BA"™
(SAVE °TEST.DO®
or
SAVE °'TEST',A has another meaning.)

é6. Then 'non-registered”’ program becomes a
'registered’ program. This program is called ‘BA°
file simply. And there 1is nothing in the
non-registered program area.

Just after doing SAVE, you can list the program with
LIST command. So you might be confused. But don’t worry
about 1it. The following illustration will help you to
understand not only why LIST command just after SAVE command,
can list the °"saved’' program, but also why PC-8281A can have
many BASIC programs at a time, [hope.

6?.

-

UNDERSTANDING THE RAM FILE CONCEPT

1. You are in MENU mode

E E “XFFFF

; DO files ;

: ' iy

5 saved BA file 5

: - <{- BOTTCM
(“XF988)

Fig 3.2

2. Select BASIC in MENU and TYPE a BASIC program.
LIST shows you the non-registered BASIC program.

: \ “XFFFF
! DO files H
' “XYYYY
| Nnon-registered)
i BASIC program !
<-- TXTTAB
1 ' ¢ *XUUUU)
1 saved BA H
' file H
¢(-- BOTTOM
Fig 5.3

- 48 -

UNDERSTANDING THE RAM FILE CONCEPT

3. Return to menu by MENU command

E E “XFFFF
i D0 files i
: : “XYYYY
E non-registeredE
E BASIC programi
: - "XUUUY
g Saved BA file é
' - ¢-- BOTTOM
Fig 5.4 |
4. Sele&t BASIC again. LIST command lists the

non—-registered BASIC program which you typed in (2).

H ! *XFFFF
[] []
[]]
i DO files HE

*XYYYY
H H
! non—-registered!
i program :

. ¢~ TXTTAB

H _ Vo (TXUULWL)
i Saved BA files]|
' - ¢(-- BOTTOM

- 69 =~

UNDERSTANDING THE RAM FILE CONCEPT

S. SAVE °‘TEST'. TXTTAB still points the program typed in (2).
So the same list appears on the screen by LIST.

: t “XFFFF
! DO files :
AXYYYY
! TEST.BA !
: - ¢~ TXTTAB
: L (XUUOL)
i Saved BA :
i fFfiles 5
~%8000
Fig 5.6

- 78 -

UNDERSTANDING THE RAM FILE CONCEPT

6. MENU and Select BASIC again or execute NEW command in BASIC.
Now, LIST command lists nothing. Type new BASIC program,
again. LIST lists the program that you typed just now.

i ! “XFFFF
i DO files H
) “XZZZZ
! non-registered!.
| program area |
: ~ <~ TXTTAB
: : (°XYYYY)
i TEST.BA ' :)
“XUUuu
i Saved BA files!
<{-— BOTTOM

Fig 5.7

=71 -

UNDERSTANDING THE RAM FILE CONCEPT

+

LOAD °"TEST.BA' in this case, or select "TEST.BA' directly in
MENU. LIST shows you the program, TEST.BA.

7.

: i\ “XFFFF
"1 DO files :
“XZZZZ
! non-registered!
H program H
“XYYYY
{ TEST.BA :
. {- TXTTAB
' ' ¢ “XUUUU)
i saved BA files!
<{-- BOTTOM

Fig 5.8

- 72 -

UNDERSTANDING THE RAM FILE CONCEPT

BASIC interpreter regardes that the current TXTTAB
indicates the current BA file. So LIST command lists the
program which was saved just now because of specified by

TXTTAB.

B

The BA file can be created in BASIC mode and can be
LOADed in BASIC mode and MENU mode. Refer to the PC-82G1A
user’'s guide and reference manual. And BA file 1is executed
with BASIC interpreter at the menu level by selecting the BA
file directly, as you know. In other words, when you select
the BA file name appeared on the MENU, PC-8201A invokes the
BASIC interpreter, LOAD that BA file and RUN it automatically.

UNDERSTANDING THE RAM FILE CONCEPT

S5.2.3 CO File

: The CO file is made in BASIC with BSAVE command or can
be Jloaded and saved from the cassette tape in MENU mode. The
CO file is, sometimes, called 'machine language®' file. It can
be executed directly like a command in menu level,uwhen
‘Execute’ address was specified in BSAVE and the start address
is higher than the second parameter in the latest ‘CLEAR®
command in BASIC. The default value is “XF388. So no CO file
can be executed directly from the menu level without CLEAR
command. The CO files are located above the DO files.

- 74 -

UNDERSTANDING THE RAM FILE CONCEPT

S.2.4 The Order Of The Files In RAM
The order of these files in PC-8201A is fixed.

~XFFFF
i CO files :
i DO files H
| non-registered!
i BASIC program |
' BA files :
<{- BOTTOM

Fig 5.9 the order of the files in RAM

Of course, the size of each file is dynamic.

- 75 - | e

CHAPTER 6
DIRECTORY STRUCTURE

6.1 DIRECTORY CONFIGURATION PER ENTRY

. - The directory area is allocated in the middle of the
bookkeeping area. The top of the address is F84F in

hexadecimal. The directory configuration is shown below.
DIRTBL: BASIC (=———==—mm “XFS4F
FILER
TELCGCM

NULDIR: (Directory for non-registered program)
SCRDER: (Directory for SCRAP)

EDTDIR: (Directory for EDIT command)

USRDIR: (Directory for user—defined files)

((End-o%-directory)) “XFF

rf. The non-registered program means non—-saved BASIC

. program. Refer to "BA file' in the previous section.
‘Directory for SCRAP® and °"Directory for EDIT command’
are explained in 'DO file".

Each slot in the directory consists of 11 bytes, 1
byte flag, 2 bytes address and 8 bytes file name. The first &

slots in directory area are initialized by INIT rocutine at the
COLD START.

- 76 -

s

DIRECTORY STRUCTURE

]

Dirsr Slot’s configuration per entry

Diry flag (1 byte)
Adcfield (2 bytes)
i (8" bytes)

File
" Total 11 bytes.

Biignment of Directory flag

Bi- Master bit (1 when directory valid)

Bi ASCII bit (1 when ASCII-text file)

gi Binary bit (1 when Machine-language file)
Bi File—in-RCOM (1 when file is in ROM)

Bi Hidden file (1 when file is hidden)

Bi

Bi RAM file open flag
Bi for internal use (always set to O normally)

vof address—field

Be — Address which TXTTAB must be setnto
De - Beginning address of file
Ce - ditto :

KTTAB in BASIC shows the lowest byte of the file,
the fireink pointer in the BASIC program file. Please
refer to her manual to understand what °‘link pointer® |is,
if you w:0 handle the BASIC programs.

‘nitialized values for first 6 slots in Directory
are shovelouw. The first 3 files are stored in ROM and
displaye the menu screen. (These 3 files are called the
‘standarrograms’.) Next 3 files are used for hidden files
created AM area. These hidden files will not appear on
the Menueen. Refer to previous section, ‘DO file' and "BA
file®'. ' characteristics: of <these hidden files are

describeere.

- 77 -

DIRECTORY STRUCTURE , T

rf. Firast 6 slots in Directory (Initialized data
stored in “X&CS8E) '

08 “B181106009 X
DW Start address of BASIC
D8 ‘BASIC °
b8 %)
DB “B1081160600
oW Start address of TEXT
08 ‘TEXT ‘ ’
08 °)
D8 “B18110060
. DU Start address of TELCOM
DB ‘TELCOM °
0B]

s for non-registered program

DB ~B16001060
DW 8 .
DB e

D8 * XXXXXXX

‘;Ffor SCRAP file

08 "Bi110061000
oW 0

0B e

D8 “YYYYYYY’

s Ffor EDIT command of BASIC

o8 "B010610698
oW 9

D8 @

oC *ZZ7Z777ZZ7°

APTER 7
RGANIZATION

M FILES
\apter 2 to understand the whole of the

| are stored with the fixed order. It
lea, the BASIC programs which has the
| at the bottom of the RAM area, near
iCII files, the suffix is '.00°') are
files. And CO files, the Machine
CO0* are saved above the DO files, near
il1Tustration will help you understand

- 79 -

RAM ORGANIZATION

1. There are S files in RAM.

“XFFFF .
{Bookkeeping

\ Aresa

iFree area &

iData area ‘Upper

i MACHIN.CO :

' DIARY.DO '

i\ MEMO.DO ELouer

! GRAPH.BA Lol

: HERY

! GAME.BA :

: : 1 {- BOTTCOM
Fig 7.1,

RAM ORGANIZATION

GOLF.

2.

Add new BASIC file,

MACHIN.CO

MEMO.DO

{{=-- Added here

GOLF .BA

Not

GRAPH.BA

Changed

GAME.BA

-, - e-

———D

Lower

Fig 7.2

_81 -

RAM ORGANIZATION

Add new ASCII file,

3.

v

e R e |

MACHIN.CO

¢ o= aw

Upper

v
2 J
0
N

DIARY.DO

MEMO.DO

—-— e -

<

{== Inserted
here

<

ADDRES.DO

! GOLF.BA

Lower

Not

changed

GRAPH.BA

!
v

GAME.BA

Fig 7.3

_82 -

RAM ORGANIZATION

- L)

Add new CO file, CHAR.CO

CHAR.CO Inserted here

A
|
i

Upper MACHIN.CO

DIARY.DO

MEMO.DO

- e
e e —- S w. e Ge P - T w. -

Not changed
ADDRES.DO

Lower GOLF.BA

& - -

GRAPH.BA

-—— wa m-
- -

GAME.BA

- aw- TS G VR me TE Gw PP mw T mw e me

A

Fig 7.4

A new BA file is created above the old BA files.
Otherwise a new DO file is stored below the lowest DO file,
just above the BA files. A new CO file is made just ABOVE the
CO files. (Just below the address which is pointed by VARTAB.
Refer to "Bookkeeping area‘.)

- 83 -

RAM ORGANIZATION

And you know that the ndén-registered BA file 1is
created between the BA files and DO files, as described in 'BA

file®' of 'What is RAM files'.

eX.

Non-registered program is

under the ASCII file.

ASCII1.DO

non—-registered
program

BASIC2.BA

created just

Lower

Fig 7.5 Position_of non-registered program

-84 -

RAM ORGANIZATION

The detail information™ about the directory
configuration is described in ‘Directory structure’'. The
bookkeeping area and the directory area are situated at the
top of RAM area.

~“XFFFF <
“XF977 - .
i Directory area. bookkeeping
: ' area
“XF84F H

“XF380 <

Fig 7.6 Directory position

- 85 -

RAM ORGANIZATIGN

- 7.2 BOOKKEEPING AREA N 7

The book—keeping area is located at the top of the RAM
area. The area is divided into 3 parts. The first part,
lowest part from “XF388 to “XFBBF, includes the pointers and
flags for RAM file handling. And many BASIC interpreter’s
flags, pointers and temporary data area are here. As you
know, the directory area is included in this part.

The second part, “XFBCG to “XFE3F, is used for the
line buffer. of LCO display. BASIC wuse= this area in the
Screen Editor function, also. But the concept of this line
buffer is different from the VRAM in the traditional disk top
personal computer. Only the character codes are stored 1in
this buffer. There is no attribute data. The attribute data
is stored in another table. Refer to the chapter 9,
explanation about the LCD driver.

The third part, “XFE48 to “XFFFF, is reserved by B8I0S.
The switches and data storage for RS-232C, Key Board and other
1/0 drivers are stored here. :

“XFFFF
{ Part 111 ! BIOS s data
~XFE4@ _—
! :
,i Part II i LCD buffer
“XFBCQ : : '
H ! BASIC’s data
i Part I i File handling data
: i Directory '
*XF380

Fig 7.7 Bookkeeping area

RAM ORGANIZATION

7.2.1 Part I (For RAM File Handling And BASIC)

NOTE: .
In this section, the articles about the
pointers and flags for BASIC are omitted, because this
document is written for the programmer who wants to
understand the many good features in PC-8261A, in
order to utilize this machine with 2nd ROM or wuser’s
machine language program. Not written for the peocple
who wants to understand the internal specification of
PC-8261A°s BASIC interpreter. Se I think this
document is unfriendly for such kind of pecple.
Please refer to another manuals and textbook if you

need understand the BASIC interpreter.

There are many important pointers are stored in this
area for RAM file handling. When some of them are mis—handled
in your routine, all RAM files might be deleted at next
operation of the standard ROM,ROM #8, for instance, power—on
or next SAVE command in BASIC. Because the standard programs
(BASIC, TEXT and TELCOM) and operating system (represented by
Menu), believe that the=e pointers point the right address.
So if a pointer which should point the lowest address of the
DO files, points one byte s=maller than it should point
correctly, TEXT might not invoke any DO files in it. Please
understand the purpose of each pointer and make sure that each
pointer has a right value any time. '

The important pointers for RAM files are listed below.

ADDRESS (Hex) NAME SIZE (Decimal)
F380 FSIDSV 2
F384 HIMEM 2
F439 STKTOP 2
F43D TXTTAB 2
F84F DIRTBL 33
F8709 NULDIR 11
F878 SCROIR 11
F886 EDTDIR 11
F891 USRDIR 231
FoBa - BOTTOM 2
FA9A MEMSIZ 2
FABF FRETOP 2

2

FAE1 : ASCTAB

8?

RAM ORGANIZATION

7.2.1.1

FAE3 BINTAB ‘ 2

FAES VARTAB 2
FAE? ARYTAB 2
FAE®S STREND 2
FBé3 FILTAB 2
FB&7 ~ NULBUF 2
FSIDSV

ADDRESS “XF386

SIZE 2 bytes

Purpose First power on or not

If this FSIDSV is not identical with FRSTID
("X8A4D), <the 1initialization routine falls into the

" "COLD START® routine. In this case, the all data and

?.2.1.2

files in PC-8201A are cleared. The - "COLD START®

routine sets FRSTID here after done the
initialization. And no one may not change this ID
valuye.

HIMEM
ADDRESS *XF384
SIZE 2 Byte

PURPCSE Highest memory available memory

This pointer keeps the highest memory address
available for BASIC. The area between the address in
this pointer and “XF388 is reserved for the machine
language file or anocther user’s special working area.
No standard program will break the data in this area
except POKE statement in BASIC. (The °‘POKE® statement
can write on anywhere in the RAM uwhich 1is selected
now. So be careful with the address in POKE statement

- 88 -

RAM ORGANIZATION

?'2.1.3

702.1'4

when you use it for storing your machine language
program or character data into RAM area.) The ‘HIMEM®
can be changed by the second parameter of 'CLEAR'
statement in BASIC. Refer to the PC-8201A BASIC

reference manual.

-

TXTTAB

ADDRESS “XF45D
SIZE : 2 bytes
PURPQOSE Pointer to beginning of current

BA file

This pointer is wvalid in BASIC mode. In
another mode, TEXT or TELCOM mode, this pointer keeps
the latest value used in BASIC. In BASIC mode, the
address of the first link pointer is stored here. And
this value won't be changed in BASIC mode unless
'LOAD" command is executed to load another BASIC
program, or "NEW®' command. Almost 1internal routine
for BASIC interpreter refers to this pointer to know
the top of the current program. And this pointer is
very important when a BA file is deleted, too. You
cannot kill a BA file in BASIC mode when this TXTTAB
po%nts the BA File. Refer to "How to delete a BA
file®.

STKTOP
ADDRESS “XF459
SIZE 2 bytes
PURPOSE‘ Top location to use for the stack

Initially set up by INIT routine in ROM #9
according to memory size to allow for 256 bytes of
string space. This value will be changed by a CLEAR
command with the first argument. The difference
between MEMSIZ and STKTOP means total string space.

-89 -

RAM ORGANIZATION

7.2.1.5

7.2.1.6

The 2 byte space between MEMSIZ and FILTAB is kept for
‘VAL® function in BASIC. The ‘VAL®' function sets '8°
at the end of the strings on evaluating the strings.
So this 2 bytes area prevent to over—-write the FCB

area above the FILTAB.

DIRTBL
ADDRESS “XF84F
SIZE 33 bytes
PURPQOSE directory for program in ROM

The names and pointers for the programs in RCOM
are stored here. They are BASIC, TEXT and TELCOM. If
you don’t want to use these standard programs, you can
use this area for your programs. This area will be
kept until ‘COLD START is invoked. Refer to

‘Directory construction.’

NULDIR

ADDRESS - “XF87@

SIZE 11 bytes

PURPCOSE Directory for non-registered program .
This area is kept for internal use. The

‘non-registered program”’ that means the BASIC program,
Just typed after selecting BASIC, uses this area for

‘pointing the starting address. There 1is a detail

explanation about th? 'non-registered’ program in the
?revious section, BA. file . And also, refer to
Directory Construction’.

-98_

RAM ORGANIZATION

7.2.1.7 SCRDIR

ADDRESS *XF878B
SIZE 11 bytes
PURPOSE Directory for SCRAP
The TEXT editor can do °SELECT®, °"CUT®, °CcoPY®
and 'PAST®. This directory is used for this

‘temporary file', SCRAP, in TEXT. This file is
created when some characters are °SELECT'ed and
‘COPY"ed or °‘CUT'. (Refer to PC-8201A user’'s guide
"SELECT", °"CUT", °"COPY' and ‘PAST'.) This file is kept
even if you exit from TEXT. And you can use it 1in
another programs, BASIC, TELCOM and so on. If you CUT
or COPY without SELECT, the starting address points
Control-Z, It means that the SCRAP files is empty.
Refer toc "D0 file®’ and ‘Directory Construction’.

7.2.1.8 EDTDIR

ADDRESS ~XF886
SIZE 11 bytes
PURPOSE Directory for EDIT in BASIC

The EDIT command in BASIC makes a temporary DO
file. This slot is used for this file. Refer to ‘00
file® and "Directory Construction®.

7.2.1.9 USRDIR

ADDRESS “XF8%1

SIZE . 231 bytes
PURPQOSE Directory for user’s files (21 slots)

This area is used for BA files, DO files and
CO files which user makes. 21 files can be registered

-91-

RAM ORGANIZATICN

here at most. The end of directory area is indicated
by °"°XFF°, 'Directorg search stopper’'. Refer to °
Directory Construction .

7.2.1.10 BOTTOM

ADDRESS ~XF98@
SIZE 2 bytes
PURPOSE Bottom address of RAM

The lowest available RAM address 1is saved
here. You can know how many RAM chips are installed
in this RAM bank easily by checking this pointer.

7.2.1.11 MEMSIZ

ADDRESS “XFA9A
SIZE 2 bytes
PURPOSE Highest location in Memory

This pointer points the +tcp of the siring
space. The area between the MEMSIZ and FRETOP+1 is
called "Used string space’, and the area between the
FRETOP and STKTOP +1 is °‘Free string space’. ’

7.2.1.12 FRETOP

ADDRESS - “XFABF
SIZE 2 bytes
PURPQOSE Top of the string free space

The highest address (closer to “XFFFF) of the

- 92 -

RAM ORGANIZATION

string free area is keét in this pointer. The lowest
address is kept by STKTOP + 1. '

7.2.1.13 ASCTAB

ADDRESS ~XFAE1

SIZE 2 bytes
PURPOSE Pointer to start of ASCII files

This pointer points the first byte of the
Flrst DO (ASCII) file.

7.2.1.14 BINTAB

ADDRESS : “XFAE3

SIZE 2 bytes
PURPOSE Pointer to start of COMMAND file

The lowest address of the first CO file is
kept here.

7.2.1.1S5 VARTAB

ADDRESS *XFAES
SIZE 2 bytes
PURPOSE- : Pointer to simple variable space.

This pointer keeps the start address of
VARIABLE TABLE area just above the CO files.

- 93 -

RAM ORGANIZATION

7.2.1.16 ARYTAB

ADDRESS ' “XFAE7?
SIZE 2 bytes
PURPQOSE .Pointer to beginning of array table

_ The ARRAY TABLE is allocated just above the
VARIABLE TABLE. This points the beginning address of
this ARRAY TABLE.

7.2.1.17 STREND

ADDRESS “XFAE9
SIZE 2 bytes
PURPQOSE End of storage in use

This pointer keeps just above the address of
ARRAY .TABLE. The area between this pointer and the
stack pointer can be used as the FREE area.

Note:
When you will use this FREE area, you have to consider
about the stack area. As the stack pointer points the

current bottoem of the stack area, you had better about
128 bytes for the feature stack operation.

7.2.1.18 FILTAB

ADDRESS - “XFBé&3

SIZE 2 bytes
PURPQOSE Point to address of file data

This points to the starting address of the

- 94 -

RAM ORGANIZATION

file data area. The file data area consists of the
FCB address. If "MAXFILES® command in BASIC was not
executed after °COLD START®, this table has 4 bytes.
The first 2 bytes points the NULL files buffer.
(NULBUF points the same address.) The second 2 bytes
points the #1 file’s FCB address. Refer to the
following section about FCB.

7.2.1.19 NULBUF

ADDRESS “XFB&7

SIZE 2 bytes
PURPOSE Points to address of file #@ buffer

The buffer for file #B8 , sometimes called
NULBUF, 1is allocated just above the file data table,
pointed by FILTAB. :

- 95 -

RAM ORGANIZATION

| “XFFFF

Bookkeeping

{--- “XF380

User’s machine
area

or
Device code

{-- HIMEM

FCB 3

- - —-- - -

(#1 == #n)
(==~ Address is
stored in FILTAB
i Nul buffer :
! (File #@) H
: 1 {== NULBUF
! FCB address H
H 1<{-- FILTAB
i (2 Bytes) :
1 Used 1{-=- MEMSIZ
{ String area H
i Free 1 {== FRETOP
i String area |
{-- STKTOP

Stack area

{=- Stack Pointer

Free area

{-- STREND

Array data

{-= ARYTAB

- 94 -

} Simple !
I Variables '
: 1¢{—— VARTAB.
! CO files :
; ' ¢(—— BINTAB
} DO files 5
3 ' ¢(-— ASCTAB
,; BA files 5
: ' (== TXTTAB
: ' (== BOTTOM

"?ig 7.8 Pointers and ROM configuration

- 97 -

RAM ORGANIZATION

7.2.2 Part II (VRAM Area For LCD D

ADDRESS “XFBCO
SIZE 640 bytes
PURPOSE VRAM
This area is used for the VRAM of LCD (ligquid
Quristal Display). In this area, the data is stored

as the character code. (ANSI character code. Refer
to 'APPENDIX A4' 1in PC-8201A Reference Manual.) The
LCD driver, installed just below the LCD panel, gets
this character code and displays it on the LCO. The
328 characters (40 by 8) can be shown on the LCD
panel at a time. So only second 320 bytes, from
“XFDG9Q to “XFE3F, are used for VRAM. The first 329
bytes , from “XFBD@8 to “XFCFF, are used only when TERM
mode is selected in TELCOM. (You can find "PREV® at
the bottom of the screen in TERM mode. The °‘PREV®
shows you the previous screen in TERM mode. Refer to
‘Chapter 8 TELCOM® in PC-8201 User’s Guide. The
. *PREVIOUS® is the first TERM SUBCOMMANDS.)

The data in VRAM appears when LCD' driver is
turned on. Refer to Chapter 9 about the control
sequence for LCD management.:

7.2.3 Part IIl (Bookkeeping Area For BIOS)

~ ADDRESS “XFE4@ --- “XFFFF

. This area includes the data area for RS-232C
driver, the buffers relevant to Key Board driver and
working area for LCD driver. Refer to Chapter 9 - 1S5
to know how to use the peripheral drivers and the data
in this area. . .

- 98 -

RAM ORGANIZATION

.

7.2.4 FC» Control Block)

Y, the FILTAB points the lowest address of the
file conjata area. It does NOT mean FCB. The FILTAB
points th: of the starting address of the FCBs, FCB

Offset, ifile is opened.

ei\B and FCB
FI"XFB&3) ===——— > “XFléA
Daory (in hexadecimal)

F:éE Fi ?? F2 L 2 LR 2 LN 0

Tkt 2 bytes ("XF1l4E) points the starting address
of FCB of #8 file (NULL buffer). The second 2
byXF277) is the top address of the FCB for the
fi. These starting addresses are called FCBOFF

(Fset address).

TFarea for NUL and file #1 are allocated by the
INITIALIZEine in ROM #8. The 2nd and more FCB area will
be allocatthe BASIC language, MAXFILES command. Refer
to PC-828%rence manual.

The FCB ca of 9 bytes parameter area and 256 bytes
buffer arcept for NULBUF. NULBUF consists of only 256
bytes buffa. The purpose and the size of the parameters
are listew. Since this FCB can support the Floppy Disk
file, you *ind some meaningless parameters for RAM files.
Of cause, in use them for own your purpose if you wish.

(1) FL.MOD

Aqdress: FCBOFF+8
Size: 1 byte

The file mode of the FCB. If this byte is not
sevigs FCB is not used in BASIC. If you obey the
BA rule, you have to set non zero value here when

yon that file.
1 INPUT only

2 QUTPUT only
8 APPEND only

- 99 -

RAM ORGANIZATION

(2) FL.FCA o
ADDRESS ¢ FCBOFF + 1
SIZE: . 1 byte

The first cluster allocated to file. In RAM file
handling, this parameter has no meaning.

(3) FL.LCA
ADDRESS:: FCBOFF + 2
SIZE: 1 byte

The last cluster accessed. For RAM file open, this
and next byte is used for the storage of the Directory
address of that RAM file.

(4) FL.LSA
ADDRESS FCBOFF + 3
SIZE 1 byte

The last sector accessed. For RAM file open, this and
previous byte is used for the storage of the Directory
address of that RAM file.

(5) FL.DSK
ADDRESS: FCBOFF + 4
SIZE 1 byte
Disk # of the file or Device 1ID. The table listed
below is the Device ID table in PC-8201A.
Device name ID number
LCD “XFF
(CRT - °XFE)
CAS “XFD
CcoM *XFC
(WAND . *XFB8)
LPT “XFA
RAM “XF9

CRT and WAND is option 1/0.

(6) FL.SLB

- 186 -

RAM ORGANIZATION

ADDRESS: FCBOFF + S - .
SIZE: 1 byte

Size of last buffer read.

(7) FL.BPS

ADDRESS: FCBOFF + &

SIZE: 1 byte

" The position in buffer for both PRINT and INPUT with

the file #, One of the most important parameter 1in
FCB.

(8) FL.FLG

ADDRESS : FCBOFF + 7

SIZE -

This byte and next byte are used for the offset
address of the RAM file which is opened now. For
example, in the °‘INPUT® mode file, this offset address
is advanced by 256 bytes when the block-read command
reads 256 bytes from the file intoc the buffer in FCB.
So in reading or writing to the RAM file (DO file),

~ the starting address and this offset show the next
byte should be read or written.

(9) FL.OPS

ADDRESS:: FCBOFF + 8

SIZE: 1 byte
High byte of the offset address for RAM file. Refer
to FL'FLGO

(18)FL.BUF

ADDRESS: FCBOFF + 9

SIZE: 256 bytes
| Buffer for the file.

- 181 -

CHAPTER 8
RAM FILE HANDLING

In this chapter, the technic to manage the RAM file is
described. The main purpose is to create or delete a RAM file
for the applicaticns stored RAM area or 2nd ROM. As described
before, if there is some violation in standard rules of RAM
file handling, the file you made (or sometimes all files in
the RAM) will be Jlost by the standard manipulation. (The
*standard manipulation’ means the file handling or cperation
with Menu, BASIC, TEXT or TELCOM in the ROM #@.)

There are many useful routines to make up these
violation in standard rules in ROM #3. But using ROM #8 from
ROM #1 will reduce the speed of the application. If you want
to handle the RAM file without ROM #8, please make sure 'What
you should do" in this chapter. And refer to ‘Bookkeeping’
and ‘Directory structure’,

NOTE: The another technical manual for PC-8281A has
been available already. There are many information
about the RAM file handling routines in ROM #8 in it.
For example, °OPEN RAM FILES', °KILL ASCII FILE®,
'READ A CHARACTER FROM A RAM FILE® and °CLOSE ALL

FILES®. If you will use your application or
subro?tine with ROM #@, you had better refer to that
manual.,

- 182 -

RAM FILE HANDLING

8.

1 WHAT SHOULD WE DO IN RAM FILE HANDLING

In the "Directory structure’' and ‘Bookkeeping area’,

many rules about the RAM file handling are described. I do
explain again about the important rules.

i.

Make sure that there is enough free area

When a new file is opened , or new data 1s appended
and inserted, please investigate whether there is enough
free bytes in the current RAM bank. Especially, the free
area requested in OPEN is sometimes ignored. At least, one

byte is necessary for OPEN a DO file. 3 bytes for CO file.

Refer to 'What is RAM file® and following sections.

You can find where the free space is in the figure in
‘Bookkeeping are’. The difference between the pointer
'STREND' and the value in the stack pointer indicates the
free size. But don’t forget that some area will be used for
the stack operation in that free area. For instance, the
make-room routine used in BASIC and TEXT recognizes that the
current free space is less 120 bytes than that difference.
In other words, 120 bytes is always maintained for the 608
stack area when new data is stored. Refer to ‘MAKHOL' in

. “Useful Routine For RAM File Handling In ROM #8°.

2. ‘Register file name correctly

The contents of the directory is described in
‘Directory construction’. No one forgets to register the
file name in 1it. But scmeone forgets to set up the
directory flag byte and the starting address of the file.
If you don’t set the directory flag, the file might be
deleted by Menu or another operation. If you write a bad
starting address in the address field, the link of the
directory and the files will be lost. By the result, you
cannot select a file properly in the Menu mode or PC-8201A
is hung up. Any way, the directory flag and address field
have very important meaning. Please refer to the ‘Directory
construction’ and following sections.

3. Maintain the order of the files

In orqer to maintain the order of the file, we have to
do a special trick in setting the starting address of the

- 183 -

RAM FILE HANDLING

new file. For a new DO file, we have to set ASCTAB -1 as
the starting address of that new file at the directory area.
And for a new BA file, you have to register the ASCTAB -1 in
the "non-registered’ file’s directory area and insert double
NULL code there. That new BA file will be created at ASCTAB
-1 and will have the starting address, ASCTAB - 2. In
making both of a new DO file and a new BA file, LNKFIL
should be executed before end of its process. Refer to
‘Useful Routines for RAM file handling in ROM #0° to
understand what is LNKFIL. '

4. Make and shrink a hole safely

The calculation of the free space is very important.
And you have to maintain the stack area when you make a your
room. And one more important thing is the management of the
pointers. The reason why many programs, Menu, BASIC, TEXT
and sc on, can use the same RAM area safely 1is that they
adjust the pointers for RAM every time when they change the
RAM configuration. For example, BASIC deletes & BASIC
program file, he changes many pointers, STREND, ARYTAB,
VARTAB, BINTAB and ASCTAB. And he turns off <the directory
flag in order to indicate that the sloct in the directory is
not used now. Refer to MAKNOL and MASDEL in ‘Useful
Routines for RAM file handling in ROM #0,° :

S. Insert the promissory byte in the file

When you open a DO file, you have to enter one byte
data at least. The data is Control=-Z (“X1A), it shows the
end of file in RAM. Sometimes this promissory byte is
forgotten. So the routine which makes up the starting
address in the directory area is confused. Simul taneocusly
BASIC needs 2 NULL bytes at the end of the file. Otherwise
CO file requires the 6 bytes file header at the top of the
file. Refer to ‘"What is RAM file®.

6. Make up the starting address in the directory

When you changes the RAM configuration, you have to
care not only the pointers but also the starting address in
the directory area. It is easy to image that the starting
address in the address field of all the DO files should be

- 184 -

RAM FILE HANDLING

changed when you make a new BASIC file. (BASIC file 1is
created under the lowest DO file. Refer to ‘Memory Map
about RAM files®') And when some data are inserted in
‘A.D0°, a DO file, the starting address of the DO file and
CO file located above ‘A.D0°' should be changed. Refer to
*LNKFIL® in the ‘Useful Routines For RAM file Handling in
ROM #8°'. You can get the know—how to make up the starting
address in the directory area. ' '

7. Bad data in DO file

You cannot store the data which include the character
whose code is 0, “X8 and “X1A. The '8" is used °"NULL® to
indicate the hole which is not used. Or double NULL means
the end of the BA file. The "“X8' is used "Back space’.
The ""1A° is regarded as the end of the DO file, as you
know. Refer to ‘D0 file®.

- 185 -

RAM FILE HANDLING

8.2 HOW TO MAKE NEW FILE

é.2.1 How To Register The New File Name

At the first, the new file name should be registered
in the user’s directory area when you create a new file. The
user s 'directory area is started from USRDIR. And the next
byte of the user’s directory area, the end of the directory
area, has “XFF (255 in decimal). This byte is called

‘Directory Stopper’. The used slot starts with the number -
larger than “X88 as the directory flag. Therefore it is easy
to find the free slot. Refer to the sample program shown
later.

You had better compare the new file name with the file
name which is existed already. Two files which have same file
name sometime= occur a serious problem. So during searching
the free slot, the existed file name should be checked. And
if there is a same file name, you had better delete it before
making new file or abandon to make a new file.,

If you succeed to find a free slot in the user’s
directory area, you have to register the directory flag, the
address of the file and the file name. In this time, you have
already known the file name. And you can set the directory
flag now. (You can get the detail information about the
Directory flag in the section, DOIRECTORY STRUCTURE.) The
address of the file will be fixed later. Because the way to
get the address for the new file is depend on the file type,
DO file, BA file and CO file. Any way, don’t forget to set up
the directory flag when you register the new file.name.

- Otherwise =omecne, Menu, BASIC or TEXT and sc on, will destroy

your new file without any caution.

Refer to 'Directory construction'.

8.2.2 How To Make DO File

If you have already registered the file name and
directory flag at the slot in the directory area, now the only
one information lacking in the new directory area 1is the
address of <the new DO file. If you didn't read "How to
Register The New File Name®' and you have not set the file name

- = 186 -

RAM FILE HANDLING

AR

and directory F]ag yet, please read that section and make up
them first.

Usually the new DO file is created just above the
ASCTAB, the lowest address of the iexisted DO files. Refer to
the figure in the ‘What is RAM file" to make sure your image.
If you go with the standard rule which Menu, BASIC and others
in ROM #90 is used, you can copy the contents of the ASCTAB-1
as the starting address of the new files. Then the
registration of the new DO file is done completely. The
reason why we have to use ASCTAB-1 instead of ASCTAB is to
mgjntain the order of the files. The LNKFIL, to make wup
starting address in directory area, searches the file name
from top to end and links the starting address of each file.
‘For LNKFIL searches the directory from younger address to -
older address and older file has younger address, the order of
the DO file will be swapped if you use ASCTAB instead of
ASCTAB-1. Refer to °‘LNKFIL® in ‘Useful Routine for RAM file
handling in ROM #9°", ‘

But you have to do two more steps for that new 00
file. One is to insert the end of file flag at the bottom of
that new DO file. Another one is, as you know, to make up the
starting address of other files in the directory area.

: There is no DO file whose size is zero, because the
final character of the DO fiie should be “Z (“X1A, 26 in
Decimal). In other words, the “Z indicates the End of File of
the DO file. So the DO file will spend one byte at least. If
you only want to open the new DO file without any data, you
have to insert a “Z at the starting address. If you want to
save some data now, you have to append a "Z at the end of the
data. Never forget to insert a "Z at the end of the file.
2??eruise, next RAM file operation might destroy the all RAM
iles. _ .

In order to make a room for the new file, a convenient
routine 1is 1in the ROM #08., Its name is MAKHOL, MAKe HOLe.
This routine makes a hole from the specified point and whose
size can be decided by the contents in [BC] register. Refer
to 'MAKHOL® in ‘Useful Routine For RAM file handling in ROM
#Q°, The concept of the MAKHOL 1is shown briefly in that
section.

. If there is no free area in RAM, and you cannot insert
a Z, you cannot continue to enter data to the file. And, of
course, you have to clear the directory flag for next user.

To make up the starting address in the directcry area,
the routine named LNKFIL is ready in ROM #8. The flow diagram

- 187 -

RAM FILE HANDBLING -

) il

of that routine is shown in the ‘Useful Routine For RAM file
handling in ROM #9°'., You can get information to make your ocwn

LNKFIL routine in it, too.

. If you succeed to insert & “Z and to make up the
starting address field in the directory, the opening a new DO
file has been done successfully. You can save the data to the
new file with using MAKHOL and LNKFIL. Refer to another
section to know houw to Append, Insert, and Delete data. The
sample program in the following section will show you how to
make a new file and save data.

Cf. How to make a neQ DO file

1. Find a free slot in the user’s directory. If you
cannot find a free slot in the directory area, you
have to give up to make a new DO file. Or if you
find the same name in the directory, delete that
file or abandon to continue.

2. Register the file name and airectory'Flag at the
free slot.

3. Get the ASCTAB-1 and save it in the address field
of the slot.

4. Try to make a one byte hole at the address where
ASCTAB pointed.

S. If you fail to make a hole, clear the directory
flag which you registered at (2).

6. If you succeed toc make a hole, insert a “Z at %tha
point.

-

7. Make Qp the pointers and starting address in the
directory area.

8. That's all, The new DO file has been created
without fail.

NOTE: If you make a hole by your ocwn routine, please
make sure that the your own routine refines the
pointers. Refer to the explanation about the MAKHOL.
And refer to ‘LNKFIL® <+to know how to make up the
address in Directory. ' '

- 1068 -

RAM FILE HANDLING

8.2.3 How To Make A BA File

There is few difference between how to make DO file
and How to make BASIC file. There is no difference in the
registration of the file name and the directory flag. The
first difference is that you have to end the BASIC file with
double NULLs (8) instead of "Z in DO files. In order to
understand what double NULLs means, you have to familiar with
the function of the LINK POINTER in the Microsoft BASIC. The
inner specification of the Microsoft BASIC file is too
difficult to described here briefly. You can get some good
texts to learn the information about the BASIC programs and
their data constructions at the book store or the computer
shop. But the basic concept about RAM file handling is
exactly same as D0 file. (Register the file name and another
information at the directory and make a room for the program.)

The second difference is the new BA file is created
Just above the BA files which has already stored. In other
words, the new BA file is inserted just below the Ilowest DO
file. Refer to the section, 'WHAT IS RAM FILE?". ‘

I believe that the person who want=s to handle <the BA
files, is an expert about the BASIC program and BASIC
interpreter. If you are a novice class programmer about the
BASIC interpreter, you had better not try to handle the BA
file yourself. Please use BASIC mode in ROM #8.

ex, How to create a new BA file in PC-8201A
1. Search a free slot in the user’s directory area.

If you find a same name in the directory area,
delete the file or abanden to continue.

2. Set uwp the directory flag and copy the file name-
into the directory.

3. Copy ASCTAB -1 into NULDIR, non-register program’s
directory area. And make 2 bytes hole and store
the double NULL for non-register program.

4. Make a hole as large as possible at the ASCTAB-1.

S. The size of that hole is too sma11 for the new BA
file, clear that directory flag written in (2).

- 169 -

RAM FILE HANDLING

6.

8.
9.

19.

If you succeed to make a big hole for your B8A
file, copy the BASIC program into the hole. Don’t
forget to insert the double NULLs at the end of
the program.

Register the starting address at the starting
address area in the directory area. Usually, the

address that is one byte less than the starting‘

address of the non-registered program is used.
Squeeze the hole, when you made a too large hole.

Adjust the pointers, ASCTAB, BINTAB, VARTAB,
ARYTAB and STREND. Make up the starting address

of other files in the directory area. All DO
files” and CO0 files’ starting address in the
directory field should be changed. Refer to
LNKFIL.

End

- 118 -~

RAM FILE HANDLING

8.2.4 How To Make A CO File

The CO file is the another type of the file which you
want to make _yourself beside the DO file. The difference
between DO file and CO file is the heading instruction of the
file. ' The CO file needs the heading data instead of the End
of File character, “Z. So you have to make sure that there
are more than & bytes besides the size of your machine
language program in the free area. And if there is no enough
free area, you cannot continue to make a new CO file. If you
have already set up the directory flag and file name, clear
them soon. Don't leave the illegal flag and file name in the
directory. :

Heading of CO file

START ADDRESS 2 bytes
LENGTH 2 bytes
EXECUTION ADDRESS 2 bytes

So the file length of CO file can be calculated by
LENGTH + &. In making CO file, don 't forget to renew the
pointers, VARTAB ,ARYTAB and STREND. S

The CO file is usually made just under the address
pointed by VARTAB. So the starting addres=s of the other files
need not be changed after saving new CO file. But I recommend
to do LNKFIL after saving new CO file for safety.

ex. BSAVE °"MAC®,S0060,18,5008808 in BASIC mode

Dump the data in CO file is;

“XS@ “XC3 “XBA “XB88 “X58 “XC3 ¢+ oo ..

*XC350 (50868) Starting addres;
“X388A (19) Length
“XC358 (560080) Execution address

- 111 -~

RAM FILE HANDLING

Cf.

1.

The flow of making a new CO file

Search the free slot in the directory area. If
there is the same file name in the directory,
delete that file or abandon to continue.

Check the free area. Estimate the free éize is
greater than your CO file’s length + 6 bytes.

If there is no room, stop making a new CO file.

Make a hole just under address pointed by VARTAB
and store the data (or machine language program).
Make sure that all pointers are proper. In <this
time, if you use MAKHOL to make a room, you have
to adjust the pointer, BINTAB. Because MAKHOL
changes BINTAB always.

Register the file name, directory flag and start
address at the directory. ‘

Adjust VARTAB, ARYTAB and STRENOD. Make up the
starting address of all other files 1in the
directory for safety. If you use LNKFIL for
adjustment of the all start addresses in
directory, you have to care about the BINTAB as
you do in MAKHOL.

. That’s all.

- 112 -

RAM FILE HANDLING

8.3 HOW TO DELETE A FILE

You can guess how to delete a file from the RAM file
-aystem 1in PC-8821 easily. The things that you have to do are
to clear the directory flag and to remove the data of the
file.

To delete a directory entry, you only turn off the
directory flag. If the directory flag is. less than °X8@,
other programs regardes that slot is not used now.

And when you squeeze the body of the file, you have to
check the pointers and the start address of other files in the
directory. UWhen you are using the subroutines in ROM #4,
these pointers are adjusted automatically. But if you do it
by your own routine, you have to care about the pointers. You
can find the good clues in ‘How to make new file', and
*MAKHOL® in ‘Useful Routines for RAM file handling in ROM #0°.

Whether you treat the pointers by your own routine or
utilize the MASDEL in ROM #9, you have to make up the starting
addresses of the anocther files. The LNKFIL will do it well.
Refer to the following section to know the ENTRY information
about the LNKFIL. That section will give you a clue what
LNKFIL should do when you will make a LNKFIL by yourself.

8.3.1 How To Delete A DO File

At the first, search the file name which you want to
delete in the file. If you don’t remember the directory
construction, please refer to the chapter ‘DIRECTORY
CONSTRUCTION®, and make sure it. When you find the file name
in the directory, check the directory flag of the file. The
file which is opened in BASIC, cannot be deleted. If you do
it by force, the RAM file system might be crushed or the
system might be hung up.

Cf. The flow cof deleting a DO file (Calling Machine
language program by USR function in BASIC.)

1. Search the file name in the directory

- 113 -

RAM FILE HANDLING

2. Check the directory flag and if the file is opened
by BASIC , you cannot delete it.

3. Get the starting address of the file
4, Search "“Z (End of File)
S. Count the size of the file

6. Remove the data of the file and shrink. The ROM
routine MASDEL will do it automatically. MASDEL
changes the pointers, BINTAB, VARTAB, ARYTAB and
STREND automatically.

7. Refine the starting address of other files.
LNKFIL will help you.

8. Clear the directory flag of the file which yocu
deleted.

9. That’'s all

8.3.2 How To Delete A BA File

When you are not in BASIC program, there is feuw
differences between killing D0 file and killing BA file. The
- differences are in searching the end of file. In D0 file, °Z
(26 in .decimal) indicates the End of file. But in BA file,
there is no such a good terminater. The only one way to get
the end of the BA file is tracing the °"link pointer’ from the
beginning of the BA file to end. If you can utilize the RCM
#3, you may use the useful routines, CHEAD. The CHEAD
searches the end of the BA file. And MASDEL removes the data
and refines the pointers. You have to care about the TXTTAB
position. If you delete a BA file which is located under the
file pointed by TXTTAB, you have to adjust the TXTTAB. This
case is occurred when TXTTAB points the second BA file and you
delete the first BA file. Finally, you have to do make up the
all starting address (link pointers) in directory area.
LNKFIL will do it.

NOTE: MASDEL does not change the ASCTAB. When a BA
file 1is killed, ASCTAB should be changed. Sq after

- 114 -

RAM FILE HANDLING

calling MASDEL, you have to adjust the ASCTAB. Refer
to the sample program in the following section. Also
"How to make a BA file®" will give you a clue.

Another difference is that there is a limitation in
deleting a BA file when you are executing that BASIC program.
The following caution is available when you make a machine
language subroutine for a program written in BASIC. If you
won't make a machine language subroutine which handles the
BASIC file, you may skip to read this caution.

NOTE: You cannot kill the BA file when you are in
it. In other words, when you are running a machine
language subroutine with a BASIC program, you may not
delete that BASIC program in the subroutine. I'm
afraid that this explanation will not make sense for
yod. So I will show you the short sample.

In the BASIC mode, you can know where you are
in by °‘FILES® command. The file name with '%*° is the
current file which you are treating. You don 't kill

it.

1. Select BASIC mode in the menu

2. Type a BASIC program.
18 PRINT °*HELLO®

3. Save it.
SAVE °TEST®

4, Load it again.
: LoAD °TEST®

S. Try to kill it
KILL °‘TEST.BA®' (Return)
?FC Error
Ok

é. This result show you what I want to say. BASIC' s
KILL command checks the current TXTTAB and avoid
to kill himself. Your machine language routine
should do same check before killing a BASIC file.

- 115 -

RAM FILE HANDLING

NOTE: The comparison between TXTTAB and the
starting address of the BA file is available only when
you are executing the BASIC program or executing the
machine language subroutine in BASIC mode. It is
meaningless to care about the TXTTAB and starting
address when you are not in BASIC mode. .

| Refer to ‘What is RAM file' and "Bookkeeping area’ to
understand the position of the BA files and TXTTAB. '

Cf. The flow of the deleting the BA file

1. Search the file name in the directory

2. Check the directory flag and if the file is not BA
file, of course, you cannot delete it.

3. Get the starting address of the file in the
directory

4. Compare that starting address to TXTTAB. If they
are identical, you cannot delete it. If not, yocu
have to remember which is larger, the starting
address or TXTTAB.

5. Search End of the File ‘
CHEAD will help you to find the end of file.
Refer to "Useful Routines for RAM file Handling in
ROM #@°. ‘

6. Count the size of the file

7. Remove the data of the file and shrink.
The ROM routine MASDEL will do it automatically.
MASOEL changes the pointers, BINTAB, VARTAB,
ARYTAB and STREND. Refer to "What is RAM file'
and ‘Bookkeeping area’. And MASDEL returns the
negative length in BC register. You can use it to
adjust the ASCTAB.

8. Adjust ASCTAB
9. Refine the starting address of other files.

LNKFIL will help you. Refer to ‘Useful Routine
For RAM file handling in ROM #6°,

- 116 -

it.

ERéétore the result of the comparison betuween the
. “starting address of the file and TXTTAB. If
- TXTTAB is greater than the starting addres, adjust

'E01ear the directory flag of the file which you
‘deleted. :

. That’s all

" To DELETE A CO File

- don’t have to care about where you are in now like
~ file or killing DO file. You may delete any CO
at to delete, even if you are executing that CO
. CO file is loaded at the specified area when the
oked in menu mode or in BASIC mode. So the 'CO°
delete the 'CO" file itself, and can save the free

- 117 -

RAM FILE HANDLING

ex. Delete a CO file itself

1. Load a CO file in BASIC or MENU .

“XFFFF

i machine prog |

H 1<{==-1 BLOAD

) i or

: b

: : i Select

Y P P P T T ! in

i CO02 file ' : H

: : ! ¢ MENU

i CO file P —
BINTAB=>! :

i DO files 5

i BA files j
“X800608 : .

Fig 8.1

- 118 -

chine prog

~XFFFF
! machine prog !
: { (=— PC
! ! ¢~ STREND
I CO2 file L (- “XAAAA
! CO File :
: i ¢~ BINTAB
! DO files '
! BA Ffiles I
000 --
Fig 8.2

- 119 -

I R)

RAM FILE HANDLING

3.

Delete the CO-file and move the
“XAAAA.

data between the STREND

~XFFFF
! machine prog i<~ PC
: ! (- STREND
! CO2 file P
: i ¢~ BINTAB
! DO files 5
! BA files :
X806 -- '

NOTE: PC means Program Counter

- 128 -

and

RAM FILE HANDLING

Unfortunately, you cannot use MASDEL simply for
shrinking the hole which is made by killing the CO file, like
in deleting a BA file and a DO file. Because MASDEL changes
the pointer, BINTAB. (You can understand why BINTAB should
not be changed by reviewing the section, ‘What is RAM files'
and ‘Bookkeeping area'.) So if you want to use MASDEL, I do
recommend that, you have to save the BINTAB before calling
MASDEL and restore it after calling MASDEL.

Cf. The flow of deleting CO file.

1. Search a file name which you want to delete

2. Save the starting address in the directory

3. Calculate the size of that file. The 2nd and 3rd
byte in that file show the data length. So the
total size of the file is made by adding 6 bytes
to the data length. (The 6 bytes includes the
starting address, data length and the execution
address. Refer to ‘What is the RAM file.®)

4. Set the starting address and the length for MASDEL

S. Save BINTAB

6. Call MASDEL

7. Recowver BINTAB

8. Clear the directory flag of the file

9. That’s all

- 121 -

RAM FILE HANDLING

8.4 HOW TO APPEND DATA TO 0O FILE

The way to append data to the DO file is very easy.

At the first, get the starting address of the DO file in the

directory and search the end of file, “Z. Then, make a room

for data you want to store at that point. The routine,

MAKHOL, is a best routine to make a room. Refer to ‘Useful

- Routine For RAM file handling in ROM #8°. And don 't forget to

refine the starting address of other files in the directory

area. LNKFIL will help you. Refer to previous chapter, 'How
to make a D0 file®' also.

Cf. APPEND data to the DO file

1., Search the file name in the directory

2. Make sure the file type and status by checking the
directory flag. '

3. Get the starting address in the directory
4. Search the end of file, “Z (26 in Decimal)

S. Make a hole_ just before the “Z.
I recommend to use MAKHOL.

6. Store data in the hole

7. Shrink therhole,.uhen the hé]e you made 1is too
large for the data

MASDEL in ROM #@ is useful..

" 8. Refine the starting address in the Directory area.
LNKFIL will help you.

9. End

There is a sample program of how to APPEND data to DO
file in the following section. .

- 122 -

RAM FILE HANDLING

8.5 HOW TO INSERT DATA TO DO FILE

When you want to insert some data to the 00 file, you
can use the know-how which you use to APPEND data to the DO
file. The difference is that you have to search the address
where you want to insert the data instead of searching the end

of file.

Cf.
1.
2.

- 3.
4.
3.

6.

Insert data to DO file
Search the file namé in the directory

Make sure the file type and status by checking the
directory flag ‘

GCet the starting address in the directory
Gef the address where you want to insert the data
Make a hole for the data at the point

Usually, MAKHOL in ROM #@ is used. MAKHOL changes
the pointers, BINTAB, VARTAB, ARYTAB and STREND.

Copy data in the hole

Shrink the hole, when the hole is too large for
the data

MASDEL in ROM #@ is useful. MASDEL adjusts
the pointers, BINTAB, VARTAB, ARYTAB and STREND.

Ad just the starting address in the RAM.

LNKFIL in ROM #8 is useful. Refer to ‘Useful
Routines for RAM file Handling in ROM #0°,

End

- 123 -

RAM FILE HANDLING

- 8.6 HOW TO DELETE DATA FROM DO FILE

To DELETE data from the DO file 1is easier than to
INSERT data to the DO file. If you will use the ROM #8, the
routine named MASDEL delete the data. The MASDEL refines the
pointers and LNKFIL adjusts the starting addresses of other
file’s. You can find the detail information about MASDEL and
LNKFIL in ‘Useful Routine for RAM file in ROM #8. If you
cannot use the ROM #8, you have to renew the pointers, BINTAB,
VARTAB, ARYTAB and STREND by YOURSELF. And you must modify

the starting addresses in the directorx YOURSELF. Refer to
the chapter ‘Directory construction and ‘Bookkeeping' to
under stand the directory structure and pointers. ‘MAKHOL®

and °LNKFIL® in ‘Useful Routine for RAM file handling in ROM
#8"' show you how to do it.

- 124 -

RAM FILE HANDLING

8.7 USEFUL ROUTINES FOR RAM FILE HANDLING IN ROM #8

There are several useful routines in ROM #8 for RAM
file handling. ‘Indeed that you have to do 'bank-switching®' to
use these RAM file handling routines from ROM #1. (Refer to
Chapter 3.3) But you don’t have to worry about the pointers,
if you use them. And also, you can save the time to make your
own subroutines. I do recommend you to use these RAM file
handling routines in ROM #8 for saving time and making
applications smoothly. '

The presented useful routine in RCM #9.
MAKHOL: Make a room for data entry with changing the pointers

LNKFIL: Make sure the start address in the directory area

MASDEL: Shrink the room made by MAKHOL. This file help you
when you made a too large holg.

CHEAD: Search the end of file in BA file.

- 125 -

RAM FILE HANDLING

8.7.1 MAKHOL -

Make a hole

ADDRESS “X6CBA (~066812, 27658)

ENTRY CHL] points where you want to make a hole

EXIT

CBC] size of the hole

CHL] and CBCJ] are preserved
Carry is set if out of memory

In order to know the free area’s size, STREND
is the best pointer. The amount of the STREND and
your file’s size, in this case, should be less than

[sPl - 128@. (The ‘'SP’ means Stack Pointer, as you
know.) The 128 bytes are reserved for Stack’s
operation. If there is a enocugh room, MAKHOL shifts

the all data between the specified address and STREND.
If not, MAKHOL returns with carry set. The flow of
MAKHOL is listed at next page.

- 126 -

RAM FILE HANDLING

ex, The flow of MAKHOL. (How to make a room safely.)

MAKHOL

K, --N
N - K

1]
]

i+ STREND + Required bytes
H < SP - Stack area (128 bytes)

JESS—— ——==> Qut of Memory

Move the data between STREND and
specified address

%3
Change the pointers
ASCTAB, BINTAB, VARTAB, ARYTAB

and STREND
"/ M
i RETURN !
¥ /
Fig 8.4

It is unnecessary to care about the pointers
unless you make your own MAKHOL routine. The MAKHOL
in ROM #08 manages the pointers automatically. But it
does not change the starting address in the directory
field. Refer to LNKFIL.

- %% When you make a hole just above the ASCTAB to
create a new DO file, you have to change the
pointers, BINTAB, VARTAB and ARYTAB. The ASCTAB
is modified only when you make a hole under ASCTAB
to register a new BA file.

- 127 -

RAM FILE HANDLING

: It is easy to guess that calling MAKHOL tooc many times
will reduce the processing speed. So you had better call the
MAKHOL with a good large number in BC register. It makes a
good hole which is large enough to save the data you want to
keep. The only one thing you have to care of is that you have
to shrink the hole when you made a too big hole. The DO file
cannot include NUL (8) and *“Z (26) in the file. (The “Z means
the End of File, as you know.) There is a convenient routine
to shrink the hole and it refines the pointers, also. Its
name is MASDEL and you can get the information about it in the
fellowing section.

- 128 -

RAM FILE HANDLING
8.7.2 LNKFIL

Fix up directory structure

ADDRESS *X233A (“021&72,‘9018)
ENTRY : NONE
EXIT ¢ NONE

All registers might be altered -

This routine fixes up all possible incomplete ‘links’
between files and their directories. There are many chances
in that the link pointers (same as starting address) in the
directory fields are not maintained properliy. For instance,
Making a new DO file will change the starting address of other
DO files and CO file. I agree that these link pointers should
be medified every time when the RAM organization is modified.
But it 1is also true that such a operation will make a big
overhead in RAM file handling. Since you had better make sure
when LNKFIL should be called. For instance, when a file is
deleted during further file I[/0, all link pointers should be

fixed up.

- 129 -

RAM FILE HANDLING

Internal flow of LNKFIL

/

¥
LNKFIL :
/ .- M

¥

Mark the all valid directory
flag (turn @ bit of all
valid directory flag)

-

Get the lowest file address

Get the lowest link pointer |
in the valid file's !
directory H

Save this link pointer |

1 <

Search the lowest link pointer!

in the marked files in
directory area

Save the saved link pointer
at this marked files link
pointer field

Demark the directory flag of
that file. (turn off the bit @
of that file)

(A)

- 139 -

~

7o U |

RAM FILE HANDLING

~
N
A -4
”~
L

i Get next lowest file address
i from the bottom of RAM

All marked directory flag :
has demaked? H

L O | |

: Not End of directory

End of directory

*,--N

¥
END :
. /

Fig 8.5

When the top address of -the next file is searched, the
pointers, ASCTAB and BINTAB are useful to know what kind of

- file is searched now.

- 131 -

RAM FILE HANDLING

8.7.3 MASDEL

Delete tBCJ bytes from EHEJ

ADDRESS : “XéC3C (066874, 27708)

ENTRY:

EXIT:

CHL] pointer of the hole should be squeezed
CBCJ] size of the hole

CHL] preserved

CBCJ negated

This routine do exactly reverse operation of
MAKHOL . The data above the [HLIJI+[BC] is moved up.
And the pointers, BINTAB, VARTAB, ARYTAB are modified.
If you use this routine for shrinking a hole cf BA
file, you can adjust the ASCTAB with the negated ([BCJ .
after exit this routine. And also you can adjust the
TXTTAB by using this negated BC register if necessary.
You have to adjust the TXTTAB when you remove a BA
file which is located under the address uwhere |is
pointed by TXTTAB.

If you want utilize this routine for CO file,

you need save BINTAB and recover it after exit. The
BINTAB is not modified by killing CO file.

- 132 -

RAM FILE HANDLING | .
8.7.4 CHEAD

Search for the end of this BASIC program

ADDRESS ~x718 (34300, 1816)
ENTRY ': CHL] Top address of that BASIC file

EXIT ¢ [CHL] The last address of that BASIC file
All registers and flags are modified possibly

The main purpose of CHEAD is fix links of the
BASIC program. In other words, CHEAD goes through
program storage and fixes up all the links. The end
of each line is found by searching for the zeroc at the
end. The double zero link is used to detect the end
of the program. So EXIT CHL] and one will show you
the tép address of the next file.

- 133 -

RAM FILE HANDLING
8.8 SAMPLE PROGRAM

The sample programs listed here are the exactly
*SAMPLE". So some processes are omitted to make explanation
clearly. For instance, searching directory to find the good
slot for file handling is not described except ‘How to make a
DO file'. You know that you have to survey the all directory
for checking the same file name and free slot, when you make a

new file.

And also, these programs, stored this section are
written in plane program technic. You will find another good
algorism to handle the RAM files safely and quickly.

- 134 -

RAM FILE HANDLING

8.8.1 Make A New DO File (ASCii File)

“>e e

OPEN OO

;
USRDIR

EDTDIR
DIRLEN
file

NAMLEN
ASCTAB

LNKFIL

MAKHOL
ECFFIL

OPENDQ:
XRA
MOV
MOV
SHLD

LXI

SEANAM:
LXI
DAD
MOV
CPI
JC
INR
JZ

Is the file
DCR
MOV
ANI

ORA
JZ

e We wWe

Compare the

PUSH
INX
INX

e we wo

Register new DO file in the D1rectory area

file

EQU “XF891 ;Top address of user’s

: sdirectory

EQU USRDIR - Directory length

EQU 11 sLength of the directory per

EQU é sLength of the file name

EQU “XFAE1 ;Points the lowest address of
,DO files

EQU . "X233A ;Make up the address 1n

' ,Dxrectory

EQU “X4CBA ;Make a room for file

EQU ~1AH sEnd of DO file

A sClear HL

H,A H

L,A H

SLTADR ,C]ear slot address

H,EDTDIR ;Set Ltop of user directoryl
3 - Directory length

B,DIRLEN;Set Directory length

B8 ;Get next slot

A,M ;1Get directory flag
X80 s1Valid?

NONVAL jJump if not valid slot
A $End of directory area?
ENDSEA ;Jump if end of test

DG file? |
A sAd just directory flag
0,A scopy flag for later use
“B21088G2G
sPick up ASCII flag
A s00 file?
SEANAM ;Jump if not DO file
name
H ' sSave the slot address
H
H sAdvance to name field in

- 135 -

RAM FILE HANDLING

XCHG
LXI

MVI
CMPNAM:
LDAX
CPI
JNZ
INX
INX
DCR
JNZ

e we we

POP
MOV
ANI

ORA
JNZ

we we wo

SHLD
-CALL
- JMP

>e we we

XCHG
LHLD

MOV
ORA
JNZ
XCHG
SHLD
JMP

EVERFN:
XCHG
JMP

LHLD
MOV
ORA

Same file name is found

$ directory

sLDEJ name address
H,NAME . ;name of the file which

} we want to make
B,NAMLEN;Set name tength

D ;Get directory’s name
M sCompare with our file
NOTSAM ;Jump if not same

H sAdvance the pointers
D)

B

CMPNAM :compare next

H 1Top of the slot address o
A,M 3;Get directory flag |
“BB0GG00B10 ‘ |

sPick up OPEN BIT ?
A sFile already opened?

FILAOGP j;Jump if file already opened

Find same name and not opened file

SLTADR ;Save it
DELFIL ;Delete this file
FINDNM 3:go to Registration

Find free slot

sCDE] free slot address
SLTADR ;Cet free slot address
; that has been found
A,H H
L tNever found? B
EVERFN :jump if already found
1This is the first time
SLTADR
SEANAM ;Check next slot

;Don’t renew the address
SEANAM

To search the directory is done

SLTADR ;Is there good free slot?
A’H ’
L H

- 136 -

RAM FILE HANDLING

JZ

PUSH
MVI

INX
INX
LXI
MVI
CPYNAM:
LDAX
MoV
INX
INX
DCR
JINZ

LHLD
LXI

CALL

Jc

MVI
0CX

POP
INX
MOV
STAX
INX
MOV
STAX

*e Ve we wo

CALL
RET

CIwe we wo

ELFIL:

FILACP:

DIRFULL

;Jump'zf d{rectory full

1Save the top of the slot

H
M, "B110606000Y

» NAME
» NAMLEN

WOIXrxX0 ©OoOoIx
>

CPYNAM
ASCTAB

B,1
MAKHOL
MEMFUL
M,EOFFIL

I

-

O>»00>»00
I

LNKFIL

External routines

;1Set directory flag as DO
s file
s Advance to name field

sTop of our file name
:Name length

sget our file name
jcopy it in directory

;iContinue to end of name

;1Get lowest address for DO

3 Tiles
sMake one byte hole
;Dig

sJump if out of memory

1Set end of file marker
sLouest address - 1

s for maintain the file order
tRecover Top of that slot
sAdvance to address field
sset start address

Make up starting address of other files in
directory area

;s Delete the specified file

$ Error handling --- File already opened

MEMFUL:

137 -

RAM FILE HANDLING

Error handling === Memo;y full

.o

DIRFUL:
$ Error handling =-— Directory full

.
-

DATA AREA
AME: DB "TEST DO’
END

- 138 -

RAM FILE HANDLING

-8,8.2 Save Data Into DO File -~

® VO Ve WO Ve we we

MAKHOL EQU

LNKFIL EQU
ENDFIL EQU
’

’

SAVDAT:

we we VO

MOV
PUSH
MOV
ANI

CPI
JNZ
MOV
ANI
ORA
JNZ
MOV
- ORI
MoV

Search end

we we we

POP
PUSH
PUSH
INX
MOV
INX

Save data into DO file

“X6C08A
“X233A

“X1A

ENTRY: CHL] points directory of the file
CDE] address of socurce data
CBCJ] length of data

stMake a room for data
sMake up starting address

3End of DO file

Check the directory flag of the file

A,M s1Get directory flag
B $1Save data length
B,A ;Save directory flag
“B11606000G8

sPick up mode bits
“B1108008G09

D0 file?
BADFIL 3Jump if not DO file
A,B sCet flag again
“B9GBBR012
: - 3Pick up OPEN bit
A jFile already opened?
FILACOP 3Jump if file already opened
A,B 3Get directory flag
0068680108

1Say this file is opened
M,A

of file

B ;Recover DATA length
H ;Save Top of directory address
B sSave DATA length
H sAdvance to Address field
Q,M jget address in [CHLJ

- 139 -

RAM FILE HANDLING | | :

MOV H,M - .
MOV L,A ;Set top of the file

: .

SEALCP: .
MOV A,M sGet Data
CPI ~ ENDFIL 3End of file?
JZ FNDEOF 3Jump if end of file
INX H _ :)
JMP SEALOP ;Search next

4 R

tMAKE A ROOM FOR DATA

4 : .
PGP B $Recover data lengtH
PUSH 0 ;Save source address
CALL MAKHOL ;Dig a hole for data
JC MEMFUL 3 jump if error detected
POP D sRecover socurce address

»

copy data in to the hole

.o we ‘9o

COPYLP:
. LDAX 0 1Cet source data
MOV M,A ;save it into file
INX H
INX D
DCX - B sDecrement DATA length
ORA Cc : sEnd of data?
JNZ COPYL sContinue till end of data

Make up starting address of other files in
directory area

caLL LNKFIL

e 9O e VO

Turn off the opened bit in directory flag

e we Ve

POP H stRecover directory address
MOV A,M 1Get directory flag
ANI “B1i1111181
$Turn off the flag
MOV M,A ;Renew the flag
RET

o
iExternal routines

BADFIL:
; Bad file mode

- 140 -

RAM FILE HANDLING

FILAOP: A
File already opened

-e

MEMFUL ¢
$ Memory full error. .

END

- 141 -

RAM FILE HANDLING

8.8.3 DELETE SOME DATA FROM DO FILE

[

Delete some data from DO'Filé

ENTRY ¢ CHL] Top of the directory address
CDE] Offset address of Top data
should be deleted
CBC] Length of data should be deleted

® Ve We WO wWe Ve W we

ﬁASDEL EQU “X6C3C ;Remove some data

LNKFIL EQU “X233A ;Make up starting address
; .

DELDAT:

Check directory flag

“weo wve weo

MOV A,M ;Get directory flag of

3 the file -
ANI “B119006G0G)

sPick up VALID bit and ASCII

s bit
CPI “B118000G0

' sValid DO file?

JNZ BADFIL j;Jump if bad file
MOV A,M ;Get directory flag again
ANI “B9280000B10

3sPick up OPEN bit
ORA A tAlready opened?
JNZ FILAOP ;jump if the file already ocpened
MOV A,M 1Set opened bit
ORI “Bo0RBOR 10
MOV M,A s1Say, the file is opened

]
PUSH H sSave directory address
INX H 1Get start address of the file
MoV A,M 3
INX H
MoV H,M : ,
MOV L,A ;CHL] start address of the file
’

DAD 0 Absolute address of the data

; which should be remcoved
Delete data :
CHL] TOP of the data, [BC] data length

we we we

- 142 -

RAM FILE HANDLING

)

CALL MASDEL ;Remove the data from file
Turn off the OPENED bit

POP H . $Restore the directory address
MOV A,M ;Get directory fla
ANI “B11111101 ‘

$ Turn off
MOV . M,A

Adjust the directory

CALL LNKFIL ;Make up all start address in the
: H directory flag

RET

External routine

ADFIL:
;Bad file mode =-— Error

FILAOP:
sFile already opened -- Error

.= 143 -

RAM FILE HANDLING

8.8.4 DELETE DO FILE) -

* e wo we weo

MASDEL EQU
LNKFIL EQU

DELDO:
MOV
ANI

CP1

JNZ
MoV
ANI

ORA
JINZ

Calculate the

PUSH
INX
MOV
INX
- MOV
MOV

weo we we

’
PUSH
SEALOP:
MOV
CPI
INX
JINZ

POP
MOV
suB
MOV
MOV
S8B
MoV

-e

- -

Delete DO file

ENTRY: CHL] points the directory of the file

“X4C3C ;remove data
“X233A j;adjust address field in
; directory area
A,M sCet directory flag
“B11060G006
sPick up VALID and ASCII bit
“B1106660G09
sValid do file
BADFIL ;jump if bad file mode
A,M sget directory flag
“B00BRBG10
ipick up opened bit
A sAlready opened?
FILAOP :jump if already opened
size of the file
H ;save directory address
H sget start address
A,M s »
H
H,M sCHL] start address |
L,A {
H 1Save start adcdress
AM send of file?
EOFFIL
H inext field
SEALOP jcontinue till EOF
D ;Restore start address
e.L ;CHLI-CDEJ= length
C,A
A,H :
D
B,A 1Set length in [BCJ

- 144 -

mar ¥ ILE HANULING

XCHG sCHL] start address

CALL MASDEL ;Remove the data

POP H srecover directory address
XRA A
MoV M,A jclear it

Make up all start address in directory

e we weo

CALL LNKFIL
RET

tExternal routine
FILAGP:
iFile already cpened error

BADFIL:
siBad file mode error

*
’

' END

= 145 -

RAM FILE HANDLING

8.8.5 DELETE 8A FILE -7

WO Ve Ve W Ve Ve wWe Ve

MASDEL EQU
LNKFIL EQU

CHEAD EQU
TXTTAB EQU
ASCTAB EQU

;
DELBAS :
MOV
CPI

JNZ

XCHG
LHLD

XCHG

PUSH
INX
MOV

INX
MoV
MOV
MOV
SuB
JNZ
MOV
suB
JNZ

Delete BAS[F file

T »IX
i 4

Assume that this subroutine is used with BASIC
main program

ENTRY: CHL] directory address of the file

“XéC3C ; remove data from file
“X233A ; make up starting address

*

“X@718 ; search end of BASIC file

“XF4SD ; lowest address of current
$ BASIC program
“XFAE1 '; Lowest address of DO files

A,M ;1Get directory flag
“B19900000

+BASIC file?
BADFIL ;;Jump if not BASIC

;s file

$sLDEJ] directory address
TXTTAB j;get lowest address of the
scurrent BASIC program
3 (We are executing the
3 BASIC program with this
3 machine subroutine.)
sCDE] TXTTAB CHLJ Directory
H address
;save directory address
sadvance to address field
jget start address of BA file
$ which we want to delete

sCHL] start address
scompare to TXTTAB

. w »

ro ITrx

sjump if not same
scompare lower address

0SAM s jump if not same

ZM>ZO>» L
O
p g
X

- 146 -

RAM FILE HANDLING

. -

JMP FCERR syou cannot kill your mother
3BASIC '
NOSAM:
XCHG $save start address
POP . H srecover directory address
PUSH PSW 1save result of comparison
XRA A sCAJ=9 :
MOV M,A sclear directory flag
PUSH D $save start address

CDEJ] start address of the BA file

.o Wwe WO

CALL CHEAD s2search the end of BA file

INX H sadjust for calculation the length
POP D jrecover start address
PUSH D ;1Save start address again
MOV A,L ;Calculate the length
suBs E H
MOV C,A ;Set length in [BCI
- MOV A,H
SBB D
POP H

irecover start address

Remove body of the file

e we we

CALL MASDEL j;return negative length in C[BCI

LHLD ASCTAB jadjust ASCTAB because MASDEL
. , sdoesn’t change it
DAD B :

SHL.D ASCTAB

PUSH B ;savé this value for later use

Ad just starting address in directory

we we we

CALL LNKFIL

POP B sRestore adjustment value

POP PSW srecall result of comparison
s TXTTAB and start address
RNC tReturn 1if TXTTAB is smaller

o .3 than start address
LHLD TXTTAB ;Adjust TXTTAB because we
;s delete BA file under TXTTAB

DAD B
SHLD TXTTAB
RET

- 147 - .

RAM FILE HANDLING

s EXTERNAL ROUTINE
FCERR:

3 I1legal function call error
BADFIL:

; Bad file mode error

END |

- 148 -

RAM FILE HANDLING

8.8.6 MAKE NEW CO FILE

-
- -

MAKE NEW CO FILE

ENTRY: CSTRADR] start address of CO file data
CLENGTH] length of data
CEXECAD] execution address

® WO WO VWO WO e Ve Ve W

CHL3 directory address for this CO file

MAKHOL EQU “X6COA ;make a room-
LNKFIL EQU “X233A ;make up directory address field
HEADLN EQU é sHeader length of CO file
BINTAB EQU “XFAE3 ;lowest address of existed CO
;i files ' ‘
VARTAB EQU “XFAES ;loweat address of Variable ;
; table . E
MAKECO:: |
; Refer HOW TO MAKE NEW 0O FILE to know how to find
3 the directory address for neu files.
3 o o

MVI A, B181800G0A
1Set directory flag as CO file
MoV M,A jregister it
PUSH H ssave directory address
LHLD LENGTH j;get file length of new CO
LXI B,HEADLN;Set header length
DAD B ;1Get total length of new CO file
MGV B,H ;Set length in CBCI
MOV C,L H
LHLD @ BINTAB® ;CHL] lowest address of existed
3CO files
PUSH H ;Save current BINTAB

LHLD VARTAB ;CHL] just above highest CO file
CALL MAKHOL ;Try to make a hole

JC MEMFUL ;jump if there is no enough room
XCHG ;Save the top address of hole
POP H srecover BINTAB

SHLD BINTAB ;Adjust BINTAB

XCHG sregstore TOP of hole

- 149 -

RAM FILE HANDLING

POP
INX
MOV
STAX
INX
MOV
STAX

e we weo

XCHG
MVI
LXI

MOV
STAX
INX
INX
DCR
JINZ

LHLD
MOV
MOV
LHLD

COPYHD:

COPYLP:

MoV
STAX
INX
INX
BCX
MOV
ORA

“JINZ

-e

CALL

RET

EMFUL:

we "L oo we we

DATA AREA

® we weo

STARAD: DS
LENGTH: DS

$CDEJ directory address
tadvance to address field
oL 1Set start address

-
-

I

To register the file name in directory is omitted,.

tLDEJ top of the wvacant room
B,HEADLN;Set header length
H,STARAD;offset of header data

A,M sCet header data

] ;store it in file

D

H

B send of header data?

COPYHD jcopy 3 address as header

LENGTH ;Get data length
B,H iset length in° [BCJ

STARAD 3;[CDEJ] destination address
sCHL] source address

S.M jcopy contents of file
D

H

B scount down

A,B send of data?

C

COPYLP jcentinue till end of data

LNKFIL j:make up all start address of
sother files in directory area

ERROR HANDLING ROUTINE

memory full error

- 130 -

RAM FILE HANDLING
EXECAD: DS 2

END

- 151 -

RAM FILE HANDLING

8.8.7 DELETE A CO FILE

® We Ve we we

MASDEL
LNKFIL

BINTAB
HEADOLN

DELCO:

ENTRY

DELETE A CO FILE

¢ CHL] addres of its directory

EQU
EQU

EQU
EQU-

MOV
CPI

JINZ

T ® TOWOIWIOTL TIrFTT

*Xé6C3C j;remove data
“X233A :make up starting address
$in the directory
“XFAE3 ;lowest addre=ss of CO files
é $length of the header in CO
s file
A,M ;1Get DIRECTORY flag
“B1810660G0
sCO file?
BADFIL ;;Jump if BAD file mode
A .
M,A ;Clear directory flag
H sAdvance to address field
AM 1Get start address of the CO
sfile
oM sLHL] start address
A
»
;save start address
1Cet file length in the
s header :
M ;get length in CBCJ
M ’
+HEADLN; add header length
JH ;Set total length in [BC3
oL
srecover start address
1save it at once
INTAB ;:;get lowest address of existed
:CO files
1save it for after adjustment
sCHL] start address
" sCBC] file length
MASDEL jremove the body of the file
H srecover BINTAB
BINTAB j;adjust BINTAB

- 152 -

[T

L]

RAM FILE HANDLING

- -
*
?

CALL LNKFIL jmake up starting address in
;the directory area

RET
s EXTERNAL ERROR ROUTINE A
éADFIL:

;Bad file mode

END

- 133 -

CHAPTER 9
LCO INTERFACE

This chapter describes how to control LCD (Liguid
Crystal Display) of PC-8281A.

9.1 OVER VIEW

The LCD (LR-282C), full bit map screen which consists
of 246 * 64 dots, displays 48 characters per line and 8
lines per screen. A character on the LCD consists of 6 by 8
pixels. The LCD is driven by 18 Segment Drivers (HD44162B)
with 200 byte=s Display RAM and 2 Common Drivers (HD44823b).
Segment Drivers are selected by Port A/B of PPI (81(CS535).

9.2 CONSTRUCTION OF LCD

, The LCD is divided into the following IC blocks. Each
block has its ouwn Segment Driver with 208 bytes Display RAM.
And each IC block can display S8 % 32 dots. However, BS and
Bi0 displays only 48 * 32 dots. Of course, you can write
dots on the remaining area of Display RAM of BS and B18 with
no error, but they will never appear on the screen.

: - 154 - | S

LCD INTERFACE

P S—— 248 dots >t
t { B1: B2. { B3 | B4 ! BS |
64 dots + +
! i B&! B7 ! B8 ! BS ! Big !
Fig 9.1

The Display RAM may be regarded as the VRAM

traditional desk top type personal computer. Setting a Bit

On/0ff in the Display RAM means setting/resetting a
the LCD.

Refer to following sections how to control

Segment Driver.

- 135 -

e

3 LCD INTERFACE

. 9.3 1,0 PORT RELATED TO LCD - =

»
-

9.3.1 BLOCK SELECT --~ PPI 81C35 PORT A/B

mb7?7 &6 5 4 3 2 1 8 1sb

R . - -t - &
B

{PA7 | PAS ! PAS ! PAL I PA3! PA2 ! PAL | PAL ! OUT ~XBS
PX U XIX!X ! X! X IPBLIPRG! OUT ~XBA -

L

<=
a

PAB to PB7 is associated to BLOCK1 to BLOCKS
PBO,PB1 to BLOCK?,180 respectively.

@ = Not Select / 1 = Select

Description:

Selecting a LCD Block (same meaning as selecting a
Segment Driver IC) .which you want to access. You
cannot select two blocks at a time.

- 136 -

LCD INTERFACE
9.3.2 LCD COMMAND SET

There are S5 commands to control the Segment Driver IC.
These commands are executed via Port “XFE.

-

$.3.2.1 Display ON/OFF.

msb 7?7 6 S & 3 2 1 0 Isb
@616 +1 .1 1110 .08 DISP | OUT “XFE

DISP: Display ON/OFF
8 = Display Off
1 = Display On

Description:
DISP decides whether the data in Display RAM

is displayed on the screen.
This port doesn’t effect the contents of Display RAM.

- 137 -

LCO INTERFACE

9.3.2.2 Set Address Counter

msb 7 6 S 4 3 2 f 08 1sb

-t o o d N e -

PG1!PG8:!OFS:OF4!0F3!0F2!0F1 ! 0FQ! OUT ~XFE

+ - -

Select PAGE

PG1 PG@
e 1 . == PAGE®
8 1 -— PAGE1
1 g -- PAGE2
1 1 -- PAGE3

OFn means ‘OF fset counter®' in each PAGE.
It must be from 8 to 49. '

The Display RAM is divided into 4(8 to 3) pages and
each page contains 50 bytes (8 to 49) as shown at next page.
Segment driver has PAGE counter and OFFSET Counter. These
counter 1is set by this command. The OFFSET counter works as
the loop counter, it's value from @8 to 49. The OFFSET counter
is automatically Incremented/Decremented after read/write
operation. The counter mode is described blow. Page counter
- is npot changed by read/write operation.

- 138 -

LCD INTERFACE ‘ .

+

OFFSET‘counter

PAGE 8< >49(39 if BS/B10)

counter + + +
1 1sb :

“BoG : H PAGE @ i H
imsb | '
{1sb H

“Bo1 H PAGE 1 H
i m=b :
i1sb :

“B1o 4 PAGE 2 :
' msb d
1 msb :

“B11 ' PAGE 3 H
i 1sb :
Fig 9.2

- 159 -

R T R e

LCD INTERFACE

$.3.2.3 Set star‘ting Page’) = -

msb 7 é S 4 3 2 .1 %)
1 1

i -+

»

1SPG11SPG2 OUT “XFE

+ -
+ -+
[™
+ -+
[
4 -- 4i
-
+ -- 4
-
+--+

SPG1/8: Specify the Starting Page to be
display on LCD.

SPG1 SPGB Order of Display Page
] "} ——— g =>1->2->3

%} 1 ——-] =>2 =>3 ->0

1 7] ——— 2 =>3 -=>0 ->1

1 1 ———— 3 =>8 =>1->2

‘Description:

Assume that each LCD block is divided 1inte 4 pages

corresponding with the Display RAM. The combination

with the Page of LCD Block and Display RAM page can

changed. The °‘SET STARTING PAGE® defines the mapping

g?tu:en the Page in Display RAM and the Page of LCD
ock.

Ex.
Assume that Starting page is =et to 2. Then mapping

between Display RAM and LCD PAGE becomes as shown as
follows. .

~ 1490 -

LCO INTERFACE

LCD BLOCK

Upper

PAGE2 in Display RAM
is displayed here

PAGE3 in Display RAM
is displayed here

4 mmmmee femme e ¢

PAGE® in Display RAM
is displayed here

PAGEl in Display RAM
is displayed here

B et T T Sy

Rl A rp—

Lower

-n
-
Q

0
w

- 161 -

LCD INTERFACE

9.3.2.4 Select Address Counter Mode

e
us/D

- e

. msb 7 é S
) e 1

s
+-- 4

® | W

®IN "

+--+

OUT “XFE

+--+

+--+

+ -+
+--+
+--+

+ -+

+ -~ A

U/D(Up/Down count) —-—— @ Up Count
1 Down count

Description:

Set OFFSET Counter Mode.

- 142 -

LCD INTERFACE .

9.3.3 Read Status --—- Read The Status Of Segment Driver.

msb 7 é S -4 33 -8 1sb
{BUSY ! UP/DOWN ! ON/OFF /RESET I XXXX | IN “XFE
RESET - ===—- Status of the RST pin
8 Normal
i RST is low level
(BUSY must be 1)
ON/OFF =—=—- Display ON/OFF
] Display OFF
1 Display ON
UP/DOUN —===- Mode of Address counter
2] Down counter
i Up counter
BUSY =—=—==
@ Normal
1 Operating Command or

Writing/Reading a data.

~ 163 -

T TR T T T

LCD INTERFACE | 4

. Y

9.3.4 VWrite/Read Display Data

S s e St e

1D7106:D05:04:03102:D1:00! IN/OUT “XFF
s s e e e

Description:

Read the data from the Display RAM that is pointed by
PAGE and OFFSET counter. If you want read some portion
of the Display RAM, use this command after Setting the
PAGE counter and OFFSET counter by 'Set Address
Counter®' command and °‘Set Page Counter’ command
described before. Note that one dummy read must be
done before using this command in order to get a

correct data.

- 184 -

LCD INTERFACE

9.4 SOFTWARE FOR LCD

s
-

without

This section describes not éﬁly how to handle the LCD
reading the routines stored in ROM #9 about LCD, but

also how to maintain the book-keeping area for LCD in the RAM.

9.4.1

Segment

How To Initia]izg The LCD.

What should be done in initialization is following.

1) Set up Address counter. Usually Page 8, Offset 0.
2) Set up Offset Counter Mode.

3) Set up Starting Page.

4) Select Display ON/OFF.

The tiny program shown blow initializes LCD’s all
Drivers as below.

PAGE COUNTER = @
OFFSET COUNTER = @
UP COUNTER MODE
STARTION PAGE = @
DISPLAY BN

Note:
Whenever the power is turned on, LCD is initialized by

the reset pulse of the hard wear. At that time,
Display is turned OFF, Offset Counter is set to count

- up mode. Another status is not determined.

The ROM #8 always reinitializes LCD as Display ON,
Starting Page = 8 and Offset counter count up mode
when a character is displayed.

- 165 -

LCD INTERFACE _’

9.&.1.1 Sample Program ForVLCO_Ini;ialization.

we we v

;——— Equaters -—-

PORTA EQU
PORTB EQU
LCOCOM EQU

LCOSTAT EQU

LCOINIT:
b1

CALL

CALL
XRA
ouT

CALL
MVI
ouT

CALL
MVI
ouT

CALL
MVI
ouT

A/B

LCDBUSY:

“XeB9
“XeBA
“X8FE
“XGFE

SELALL

LCDBUSY
A

LCOCOM .

LCDBUSY
A, “X3B
LCDCOM

LCDBUSY

A, “X3E
LCDCOM

LCDBUSY
A, “X39
LCDCCM

© 3 Wait until LCD become

IN
RLC
JC
RET

SELALL:

LCOSTAT
LCOBUSY

‘Initialize Segment driver.

Ready.

3 Select all Segment Drivers

- 188

e

we

we

o we wo

-3

Inhibit disturbance for Port
Selecf all Segment Driver.
Wait until LCD become Ready.

Reset Address Counter.

Offeset counter Up mode.
Set starting PAGE=8

Display ON.

Get LCD status.
Move MSB to CF.
Wait if LCO is busy.

LCD INTERFACE

MVI
ouT

ORI
ouT
RET

END

A, “XFF
PORTA
PORTB

PORTB

- 167 -

.o 9O we

BSh
Get current status.
Select block 9,18.

LCD INTERFACE .

=3

9.4.2 How To Write A Charactér.

Writing a character on-the:LCD is performed by writing
some‘Bit patterns in the Display RAM of Segment Driver.

Basic sequence of writing a character on the LCD is as
follows.

1. Select LCD Block(Segment Driver) which you want to PUT a
character. . ’

2; Sét the Offset counter mode.(Usually Up mode)

3. Set the Address where 1st byte should be written.
4. Urite the Bit pattern.

S. Set Starting PAGE counter

é6. Insure Display ON.

rf. Next sample program.

- 168 -

LCD INTERFACE | .

9.4.2.1 Sample Program Of Writing A Character On The LCD.

- This Sample program shows how to write a character on
the LCD. This routine updates the pointers which is used by
System ROM, ROM #0, to maintain the system circumstance. .

Sample program to write a character on LCD.
This program performs same function as the following BASIC
program. '

10 LOCATE 6,9
20 PRINT ‘A°

we WO we wWe we wo we

38 END
CSRY EQU “XF3ES $ Curscor Y position
: (1 to 8)
CSRX EQU *XF3E& ;s Cursor X position
| ; (1 to 48)
LCTEY EQU “XFEB9 $ Character Y Position
3 (8 to 7)
LCTEX EQU “XFEBA $ Character X Position
H (86 to 39)
PORTA EQU “XB9 ;: Segment Driver Select
. s Port. ’
PORTB EQU “XBA s ditto
LCDCOM EQU *XFE 3 LCO command Port.
LCDSTAT EQU “XFE s LCD Status Port.
LCDIO EQU *XFF ;s LCD data I/0 Port
' ORG “XFoeg s 614406D -
LOCATE:
s LOCATE 09,0
LXI H, X0181 ;s To set cursor position
i (8,08)
SHLD CSRY :
LXI H, “X20080
SHLD LCTEY
PREP:
3—— Select Block 1 to write (1,1)
DI s Inhibit disturbance for

Port A/B of 81CS3.
You need not do DI as
far as no one

we we we

169

LCD INTERFACE

)

changes the data port of
81CS5S5. You have to consider
other INT routines.

. MVI A, X01 _3 Select Block 1
ouT PORTA H
IN PORTB 3 Get current status.
ANI “B11111160 ; Deselect Block 9/18.
ouT PORTB H
caLL LCOBUSY $ Wait until LCD become ready.
T MVI A,QO s Page 8,cffset 9.

‘ ouT LCDCOM H
CALL LCDOBUSY H
MVI A, B8G116018 ; Offset counter Up mode.
ouT LCDCOM

CHROUT :
LXI H,FONTA $ Get start Address of Font A.
MVI C, Xeé ;: Set Font size.

WRITE:

Write data to Display RAM of LCD

ENTRY: C[CHL] = Font start address,
CCl .= Length of Font.

CALL LcosuUsY

o Ve Ve weée w

Wait until LCD become Ready.

?
MOV A,M ; Get font Pattern to send.
ouT LCDIO 3 Write teo Display RaM <€ LCO.
INX H : Up date PTR.
OCR C s Bump Counter.
JNZ WRITE $ To send next pattern.
; Offset counter is Auto
$ increment Mode, so we don’t
$ care about OFFSET counter.
LXI H,CSRX s Up date Cursor PTR.
INR M $ No check for end of line in
{ this progranm.
LXI. H,LCTEY
INR M
3=——— Set starting page —=———====
MVI - A, "XOFF ; Select all Block.
ouT PORTA
IN PORTB

- 170 -

LCO INTERFACE o

ORI ~ ~B@GEGOO11
ouT PORTB
CALL LCDBUSY ;3 Wait until LCD become Ready.
MVI A, “X3F. 3 Starting page 9.
ouT LCDCOM :
MVI A, Xg8111001 ; Insure display ON.
ouT LCDCOM
El ’
RET

LCDBUSY:
IN LCDSTAT ; Get LCD status.
RLC _ 3 Move msb to CF.
JC LCDBUSY
RET

FONTA: DB “X3C,"X12,°X11 ; Font data for ‘A’
D8 “X12,°X3C, “Xe68
END

=171 -

LCD INTERFACE .

'9.4.3 How To Set/reset A Dot On The LCD.

. The Sample program shown blow explains how to
set/reset a dot on the LCD. It does same function as the

following BASIC progranm.

186 CLS

118 FOR Y=% TO 22
126 FOR X=608 TO 8@
130 PSET(X,Y)

148 NEXT X

158 NEXT Y

160 -

178 FOR Y=14 TO 18
188 FOR X=64 TO 76
150 PRESET(X,Y)
288 NEXT X

210 NEXT Y

226 END

9.4.3.1 Sample Program For SET/RESET Dot.

Sample program for SET/RESET a Dot.

e we weo

PORTA EQU “XB9 ; LCD block select.
PORTB EQU “XBA s //
LCDCOM EQU “XFE s LCD command.
LCOSTAT EQU L.CDCOM s LCO status.
LCDIO EQU “XFF s LCD data 1/0.
PSET:
0l ; Disable all interrupt
; to keep correct block
select.
XRA A : To set SET flag.
STA SR ; Set/Reset Flag.

- 172 -

LCD INTERFACE

- 173 -

LXI B, “X148E -+ [BJ=20 X count,[CI=14 Y
count. "
LXI H, “X8AB9% 3 [HJI=X Position,CLI=Y
Position.
PSET1:
: PUSH H $ Save (X,Y) Position.
PUSH B ;s Save X,Y count.
-CALL MAIN
PoP B { Restore X,Y count.
POP H { Restore X,Y position
INR L 3 Advance Y position.
DCR C 3 Bump Y counter.
JNZ PSET1
PRESET:
MV.I A, “XFF ; To set SR Flag.
STA SR 3 Set Unplot Flag.
LXI B, “X8CBS ;s CBl1=12,CLC1=066
LXI H, “X8EBD s (CH3,CL3)=(14,13)
PRESET1:
PUSH H 3 Save X,Y Position.
PUSH - B $ Save X,Y counter.
CALL MAIN
POP B ; Restore X,Y counter.
POP H : Restore X,Y position.
INR L ;s Advance Y position.
DCR C s Bump Y counter.
JNZ PRESET1
RET . ‘
MAIN:
H CH1 = X position
H CL] = Y Position
H CBl = X count
H CCI = Y count .
PUSH H ; Save X.Y Poésition.
CALL 0OT 3 Plot/Unplot a dot at (X,Y)
POP H $ Retrieve Position.
INR H 3 Advance X POSITION.
OCR B 3 Bump X counter.
JNZ MAIN H
RET
00T
caLL LMAIN
LDA SR s Get SR flag.
ORA A ;} See if set/reset?
JNZ RESET ;s Branch if Reset.
MOV A,E ;s Get MASK pattern.

LCD INTERFACE

JMP

RESET:
MOV

ANA

OISP:

MOV
CALL
DI
MVI
ouT
IN
ORI
ouT
CALL
MVI
ouT
CALL
MVI
ouT
EI
RET

LMAIN:
CL]

Reg:

ENTRY: CHI®

PUSH

PUSH
CALL
CALL
CALL
POP
CALL
POP
CALL
RET

WRITE:

e Wwe we

CALL
MOV

R EY Mol N
R

D,A
WRITE
A, “XFF
PORTA

. PORTB

“B@GGOBA11
PORTB
Lcosusy

A, "Boe111111
LCOCOM
LCDBUSY

A, Be01116061
LCDCOM

>e Vo weo

we we

R]

CAJ] = data to write.

Get Mask Pattern.
Reverse MSK pattern.
CAl = data to write.

Select all Block.

See if Lecd Busy.
Starting Page 0

Display ON.

X position in Block-1
Y Position in Block=-1

H

H

SEL2
SETADR
READ

H
GETMSK
H
SETADR

Func: Output CODATI to LCD.

Reg: A and Flags.

LCOBUSY
A,D

- 174 -

e we we we We wo

Save X,Y position.

Select Block-2.

Set Address of Display RAM.
Read the LCD. -

Retrieve X,Y position.

Get Mask Pattern.

Retrieve (X,Y) Position

Get Datavto write.

LCO INTERFACE"

2 OUT
NOP
RET
READ:
; Entry: Non
: Exit:
; Reg:
CALL
IN
to .
CALL
IN
MOV
RET
GETMSK ¢
s Entry:s CLI
: Exit: CEJ
; Reg’
MOV
ANI
MOV
mMvI
MSK1:
RLC
DCR
JP
MOV
RET
SETADR:
ENTRY: CHJ
CL]

We we Vo W We We we wWe

LCDIC

A,D and Flagsa.

LCOBUSY
LCBIO

LCDBUSY
LCOIO
D,A

Y Position

Mask Pattern.

A,L,E and Flags.

A,L
“B@ggee111
L,A

A, B8E

L
MSK1
E,A

;s Must be EI

*
.

4
at final.

CDJ = Current Data in Display RAM.

Wait until LCD become Ready.
Dummy Read.You must do this

e we

get correct data.

Get Valid Data.
Save it.

e we We we

Get Y position.

we wo weo

Set counter.

Bump counter.
Branch if not finished.
Save Mask pattern.

X Position on Block=2
Y Position on Block=2

FUNC: Set Address

Register:

A,H,L and Flags.

MOV

A,L

- 175 -

; Get Y position.

LCD INTERFACE

‘ RAL
RAL
RAL .
ANI “B11000000
ORA H
MOV L,A
CALL LCDOBUSY
MoV A,L
ouT LCDCOM
RET

LCOBUSY:

.
14
[3
’
.
’
[
»
.
’
*
’
.
’
°
’

Entry: Non

.o

e we Ve we ve

-4
.

Move Bitd/3 to Bit7/6.

GCet page.
E@J = Page and OFFSET.
Save it.

Wait until LCD become Ready.
Retrieve Address.

Func: Wait until LCD become Ready.

Exit: Non

Reg: A and Flags.
IN LCDSTAT
RLC
JC LCDBUSY
RET

SEL2:

e we we weo

SR

Select Block=2

Reg: A and Flags.
DI
MVI A, “BO0BBBG10
ouT PORTA
IN PORTB
ANI “B111111060
ouT PORTB
RET
: 0B 21)
END

- 176 -

e Ve we

-e

Get LCD status. .
Set Busy FLG to CF.
Wait if LCD is BUSY.

Select Block-2

Set/Reset flag.
g=set/FF=reset.

LCD INTERFACE

9.4.4 How To Define A Character

This section describes how to define the User
Definable characters in PC-8281A. And how to store them in a
portion of RAM where ROM #8 can use this your new Fonts. In
this section, BASIC command will be used to do some cperation.

9.4.4.1 Structure Of Character And How To Define It.

One character consists of 6 * 8 dots. Vertical 8 dots
is handled by a byte. So in order to define a character, you
must define Sequential & bytes of data. The data “X3C, 7“X12,
“X11, °X12, “X3C, “X00 define ‘A’ as follows.

- 177 -

[
—

<~X3C,"X12,°X11.°X12, ~X3C, "X3C, “X88>
-A.

s CG pattern for

18,2

LCO INTERFACE

Font pattern

S

a4

3

2

1

N

<

™

o~

1

9

St JETIE SR R R S
Vol
#--»--;.a--h--#--#--*
m m X 1ok ok | %
LIl SRR R R e
m X m x '
AR IR R ik ST Jro
x1 | x
+ -- w -- % S R R
x “ %
+-- 4 -- % ST SR R AR
m *m x 1ok | %
R it A JE T g
s S Sl ST SRS S
(o] e“a o (8]
..T-LT-L_TLT--#-LT-L
™ 0“1 ! Lo 4
LT--;T.-»-LT--#--#--*
o 1“6 (o] Lo (o)
.*T..-#--»--LT-..#--#--L
LT--LT--‘“.--._:-#--#--L
® 1“9 o i (o)
#--.;-..h--#--#--#-l
(o] 8“1 -t ! -t
#--#--h--#--#-l_.-l
0

DATA Pattern

N

NI® « N M < N 0 M~

4t -+
F -- 4 -~ 4
} -4 - ¢

= 4 -~ 4
x
f - 4 -- 4
‘
} - 4 -- 4
oI®
e
- |l o®
f -= 4 = 4
I
} == 4 -= 4
o (8]
f «= 4 -= +
olo®
X
- ®
b e 4 -

E

“X3C “X12 “X11 “X12 “X3C “X90

o
]

Fig 9.4

|
(0]
~
«d

!

LCD INTERFACE . ;
9.4.5 How To Store The Your d;n Cg

‘This section explains how to store USER CG in to RAM
. which also can be used by ROM #8, -1

Assume that you have to define Fonts as described in
the previous section. Each Font consists of 6 bytes. Font
Data has been BSAVEed in the RAM F11e named °‘FONT.CO', whose
start address is “XYYZZ.

You can make °'FONT.CO" in the following seqguence.

1. Reserve area for ‘FONT.CO" by CLEAR command in BASIC.

CLEAR <length>, <{startaddress>
2. Load "FONT.CO" into RAM

" BLOAD "FONT'
3. Register the top address of the CG.

POKE “D¢5216,<{Start Address (High byte)>
POKE "Dé65215,<{Start Address (Low byte)>

After this sequence, ROM #8, for instance, BASIC, can use the
new Oefined CG.

- 179 -

LCOD INTERFACE ' | :

9.5 AVAILABLE SYSTEM WORK AREA

This section explains'héu £3 use the system Character
Generator and how to use the available System work area.

9.5.1 How To Use,The CG In System ROM.

You might want to use the CG of ROM #8 instead of
making new CG by yourself. In such a case, this Section will

help you.

The Character Generator of characters whose code 1is
from “X20 to “X7E , are atored in the highest portion of the
ROM #8, from “X78B7 to "X7B37. Each Character consists of S5
bytes. The sample program shown blow explains how to get the
character pattern and how to expand it into the standard
shape, 6 * 8 pixels. Assume that this program is written to
be stored as the CO Fxle in the RAM files and uxll be executed
with ROM #3. :

ENTRY CAJ = character Code ("X28 to “X7E)

e we wo

EXPAND:
SUI. A, “X20 H
MQV C,A s
ADD C 3 »*2
ADD A ; *4
ADD C :
MOV C,A s [C] offset from base of CG.
MVI B, “X886 3
LXI H,CGADR
DAD B
LXI B, TEMP
MVI D, XS ;3 Set font data length.
NEXT: :
MoV A,M ; Get Font data.
STAX B
INX H
INX B
OCR D

- 186 -

LCD INTERFACE

JINZ
ORA
STA
RET

NEXT
A
TEMP+3

- 181 -

LCO INTERFACE "

H

esrin J
9.5.2 VRAM AREA IN SYSTEM UWork Area

The area from XFBCO to XFE3F in the RAM, 1is reserved
for VRAM area of the LCD. ~It is divided into 2 portions.
Each portion can be hold the character codes displayed on the
LCD at a time. So the each portion has 320 bytes. The
attribute data is not saved in this area. Only the character

code is stored.

ist *XFBCO~"XFCFF ; Keep previous Page
: ;s in TELCOM.
2nd “XFDBB~-"XFE3F ;{ Current Displayed
< ;

character is Saved.

The character code of the character displayed at the
location (1,1) on the LCD display is stored at “XFDBG, and the
code of the character at (2,1) is stored at “XFBC1 , and so
on. So the code of the left-lowest character, (40,8) is
stored at “XFC3F. This rule is used in the standard program
in ROM #8., For instance, BASIC, TEXT and TELCOM use that area
like a VRAM in the traditional disk top personal computer.
The menu screen also utilize that area. But You can use this
area as you like., The data in this area does not effect the
information on the LCD display, as far as you use your own
display routine. ‘ :

- 182 =~

LCD INTERFACE
9.5.3 -Reuefé;”ThéﬁAttribute Of The Specified Area.

ROM #@8 has the Reverse Attribute Table in Work Area.

The attribute data is kept in the area from “XFAé8 <to
“XFA87. Each bit represents the each character Box on LCOD.
(Therefore only 49 bytes can be handle the attribute of whole
LCD screen.) When the bit is off (8), it shows that the
character Box is displayed in normal mode. And the bit 1is
turned on, 1, that character Box is displayed in Reverse mode.
The relation between the Attribute bit and Character Box 1is
shown blow. The relation of the reverse attribute bit and

each character box is as follows.

VC1,1)1¢ 2,1)0¢ 3,1)1 1(39,1)1(48,1) 1
€ 1,2)1C 2,2)1C 3,21 _ 1(39,1)1(406,1)

(¢ 1,8)1C 2,8):(3,8): 1(39,8)1(48,8)

“XFAéQ Bito -- (01,1)
Bitl -— (82,1)
Bit2 -- (03,1)
Bit3 — (84,1)
Bitd -- (85,1)
- BitS -= (86,1)
Bité6 . -- (87,1)
Bit? -- (88,1)

“XFA61 Bit@ -- (89,1)
Bitl -- (16,1)

“XFA87 Bit® -- (33,8)
Bitl -- (34,8)
Bit3 -— (36,8)
Bit4d -- (37,8
Bit3 -- (38,8)
Bité -- (39,8)
Bit?7 -- (46,8)

- 183 -

CHAPTER 19
KEYBOARD INTERFACE

16.1 THE KEYBOARD MATRIX-

The Keyboard matrix of PC-8201A is as 'Fo_.Hous.

Kerboard Data Port |

- K2e kPl ko k33 KT‘.’- ko¢ kes kam

I O

L

(ol |

y .
ZHXHcHvHBHNRMAHL Po
TR N E I Ke;f
AHSHDHEHGHHHTH xb—raz0
. K PAL
T T T I 1 1T T 7 Strobe
%Lv—s—R—T—y—U—I——%:%m
T T]
O"Pt"@ l__(L.?L_.'?/_j; BA3
a L I
. =] [% 2 7
{.l 117.‘“? A :"i”"? r_ﬂ A
T 1
S =11+ 1=
T HEH e
B I e R T 1
=“HtTHS H-H—= sz — P
- T T *
LLHEH S3H AL S0P f——pAT
J\‘l L '.,]’ v
RIFT (TR~ CABS Peo
Fig 168.1

- 184 -

KEYBOARD INTERFACE

'

The abbreviation PAn (PA7, PA&, ..., PAB) and PBn
means the bit of PORT A and B of 81C55. Please refer to the
following sections about 1/0 ports. And also, KDn (KD?7, KDé

«es KDB) represents the bit of the KEYIN, Input port for the
Keyboard. . - -4 : +

Note: °/' means (SHIFTED CODE) / (UNSHIFTED CODE)

- 183 -

KEYBOARD INTERFACE
16.1.1 1/0 Port For Keybocard

16.1.2 KEYBOARD STROBE ----- PART A/B Of 81C55

. -4

| mb?7 6 S 4 3 2 1 081lsb

J_ ‘L _1_ _l_ J_

+

L L

1KS71KS61KSSIKS41KS31KS21KS1! KSB. OUT “XB9

+--+

X P X P X P X P XX 'KSS. OUT “XBA

——

KS8 ... KS@ KEYBOARD Strobe
%] Strobe OFF
1 Strobe ON

- 186 -

KEYBOARD INTERFACE .. \

16.1.3 KEYIN =———=— Read Keyboard Data

‘ msb 7 6 S 4 3 2 1 8 1sb
Fmmmdmm e b

T

KD? KDé KDS!KD4:KD3iKD2iKD1iKD@: IN “XEB

T T T T ‘r

+ -~ +

T T T

KD? veo KD === Keybocard data
@ = Depressed
1 = Not depressed

Read the strobed column of the keyboard. Please refer
to KEY MATRIX shown before to understand the relation between
KDn and Key on the key board.

- 187 -

KEYBOARD INTERFACE

-4

16.1.4 Keyboard Scanning

Key scan must be performed by software. It can be
done by the interrupt, RST 7.5. The RST 7.5 Pin of 80CSS is
connected to the TP Pin(No.18) of calendar clock (uPD19%8).
So that interrupt occurs every 4 msec in the standard system.

- 188 -

KEYBOARD INTERFACE | . 5

' 19.2 SOFT WARE FOR KEYBOARD OPERATION.
10.2.1 How To Read The Keyboard

Basic Keyboard read sequence is as follows.

1. Turn on the strobe pulse to the desired column you uént to
read.

2. Read the column from KYIN port.

3. Strobe off

The following Sample program shows how to read the Keyboard in
detail.

- 189 -

KEYBOARD INTERFACE

10.2.1.1 Sample Program Reading Keyboard.

Following Sample program read the every column and
save the data into the KYBUF(Keyboard Buffer).

Ve WO Ve WO WO We we we

Equator

PORTA EQU
PORTB EQU
KEYIN EQU

ORG
READKEY:

LXI
MVI
ouT
IN

ANI
ouT

IN
STAX
IN -
ORI
ouT
MVI

NOMAL ¢
INX

ouT
MoV

STAX
MVI
ouT
MOV
RLC

“XB9%
“XBA
“XES8

“XFooe

Read CURRENT KEY BOARD STATUS.

B,KYDATA

A, “XFF
PORTA
PORTB
“XFE

PORTB

KEYIN
B
PORTB
“Xe1
PORTB

A,"Bl11111118

PORTA
B,A
KEYIN

A, ‘XFF
PORTA
A,D

- 190 -

-0 Ve we

WE Ve VO Ve WP VO Ve W VO U YV we

-e we weo we weo

we we we

Note: Make sure Keyboard strobe is
not disturbed while reading the key board.
. You have to care of the other interrupts.

Keyboard Strobe Port
ditto
Keyboard data Port.

Cet PTR for buffer.
Disable normal key strobe

Cet PortB Status.

SET B@=@gff.

Activate Strobe for
Special key.

Read keyboard.

Save Data.

Get Status of Port B.

Set BG=0On. -

Strobe off.

Prepare PTR for key Buffer
for next data.
Strobe On

GCet data.
Store it.

Strobe off.
Retrieve strobe data.
Strobe for next column.

KEYBOARDCE .

< JC NOMAL - :
RET : All done return to caller.
ps 1 ~s PBG column
DS 1 ;s PAB ditto
DS 1 s PA1 ditto
0sS 1 s PA2 ditto
DS 1 s PA3 ditto
0sS 1 s PAA ditto
0sS 1 ;s PAS ditto
DS 1 s PAé6 ditto
DS 1 ;s PA7 ditto
s Be careful that
s Bit OFF means key
: is depressed.
END

- 191 -

CHAPTER 11
CMT INTERFACE

The physical interface of the CMT is described in this
chapter. You can find how to control the Motor of the CMT,
how to write a data to the CMT and how to read a data from
CMT.

There is no description about file ' record format of
PC-82061A. If you want the information about it, please refer
to another technical manual about PC-8281A, which has already
been released by NEC HE in Chicago.

- 192 -

'CMT INTERFACE

- '.;

11.1 HARDWARE FOR CMT

PC-8201A has the CMT. interface for reading/uriting
data with Audio Cassette. ,

Reading/writing data with CMT is done via SID Pin ,SOD
Pin of CPU(8GBCS8S). And Motor is controlled by SCP (System
Control Port,”X90). The on-bit, Logical High, is represented
by 2406Hz wave (called MARK) and the off-bit, Logical Low, is
12068Hz wave (called SPACE). So the Baud Rate of the CMT can
be up to 1200 bps, bit per second. (System ROM, ROM #9 Uses
660 bps to maintain the compatibility with PC-8881A.)

- 193 -

CMT INTERFACE

11.1.1 Uriting Operation.

While SOD is high, MARK is put out to MIC and TxC.
Otheruise, SPACE is put out. Refer the next illustration.

high tom—————t o + +

SIO

low

MIC/TxC 1< MARK> ! <SPACE>{<MARK >i<SPACE>!MARK

Fig 11.1

- 194 -

CMT INTERFACE ‘ o

11.1.2 Reading Operation.

Input wave from EAR Pin' is teformed to Square wave and
sent to SID Pin of 89C85 as shown blow. The input wave is
inverted on the way to SID Pin from EAR Pin. In reading
operation, the electric high/louw. level has no meaning. The
pulse frequency indicate whether high or low of the data. The
frequency, 2408Hz means logical high ,and the frequency,
1260Hz means low.

EAR —===-- 1{—— MARK ===)>{==- SPACE -~-—- b
-; =t bt =t ;—-+ p—— b= ;-——
spl -—-——- 1 S Y R B
b=t b=t et pmd pm—t pm—mt f——t
24006H=z : 12606H=z

e e - 195 -

CMT INTERFACE

-

£

P s 22 -

11.1.3 Baud Rate Generation.

Baud rate is Generated by software timing routine. In
writing operation, the bit data fior SOD Pin is set and it is
held during the proper duration by the software wait-routine.
On reading, a bit data is read in proper interval which is

controlled by softuware. Refer to the following section " about
the software. ~

- 1986 -

CMT INTERFACE ' | S

11.1.4 1/0 Port For CMT

< 11.1.4.1 SCP -=—- SYSféM CONTROL PORT

I/0 Address and Data Pattern

msb 7 é S a 3 2 -8 l1sb
+ e + + + + '
XX T XX XX 1 XX VREMOTE:T XXXXXX OUT “X9@

REMOTE CMT Motor control.

CMT Motor OFF
CMT Motor ON

{\ V]
nu

Description:

The current status of this port is saved at
SYSSTAT("XFE44), so you have to update this area when
you want to change the status of this port.

11.1.4.2 PPI 81C35 Command Set

I/0 Address and Data Pattern

msb 7 & S a4 3 2 1 9 1sb
B e S W S SIS SRR SR
TM21TM1: 6 + 8 1 2?2 + 211 4 11 OUT “XBS8

1)
+ e matatt T

T T -+

T™2/1 Timer Command for PPI

- 197 -

CMT INTERFACE IR

e -

--= NOP

-—- Stop

~=~= Stop after Terminal Count
-== Start i

—'
PR O®X
N
—‘
POFrRPOX
[y

- 198 -

CMT INTERFACE

"11.2 SOFTWARE FOR CMT

11.2.1 CMT

MOTOR CONTROL

CMT Motor on/off is simply performed by having access
PORT, SCP (System Control Port; “X98). Output to
at the bit 3 starts the CMT.Motor, and with off at

to the 1/0
SCP with on
bit 3 stops

Please make

LDA
ANI
RNZ
ORI
ouT
STA
RET

() we ve we

MTOFF:
LDA
ANI
ouT
STA
RET

it.

sure to update SYSSTAT(XFE44) in work Area.

“XFE44
“B11110111

"B0BBB16609
SCP
“XFE44

" Turn off CMT Motor.

“XFEA44

“B11110111

SCP
 “XFE44

- 199 -

e We Ve we W ‘..

“e we we we

Get SCP port status.

See if Motor ON7?
then return.

Bit 4 on.

Turn on Motor.
Up—date Scp status.

Get SCP Status.
Bit 4 OFF.

Turn off Motor.
Up-date SCP status.

CMT INTERFACE ‘

- ~8

11.2.2 Baud Rate Generaéibﬁ

. . Baud Rate must be generated by software timing
routine. The CPU usea 2.4576MHz clock, so the time of 1 bit .
output/input should be counted with this clock. The seguence
of the counting operation is shown plou.

1 BAUD RATE | NUMBER OF STATE !
i i for 1 Bit j
E 75 bes | 32448 E
E 158 P 16224 i
i 300 : 8112 '
T : 4856 !
! 1208 ' 2628 !
- + +
Fig 11.3

- 206 -

CMT INTERFACE .
' 11.2.3 UWrite A Data To The CMT

Writing a data to the CMT is performed by controlling
, SOD pin. Following sample program;illustrates how to write a
byte to the CMT.

Sample Program for writing data to the CMT

Write a byte to the CMT,the lowest routine.

Assumption:
CMT Motor rotating regularly and CALLED
Interrupt disable.

OUTPUT: Non.

;
;

;

s INPUT: CAJ] = Data to be send.
: BAUD Rate = 08 bps

W

RITE:

MOV B,A H 4: Save data.
MVI A, XS0 3 7: Write start bit.
SIM H 4:
CALL HOLD s 18: Wait 4043 State.
IN PGORTC 3 18: Dummy to adjust timing.
MOV C,98 H 4: Set data length in bit.
BYTEO:
MOV A,B H 4: Retrieve data.
RLC H 4: Set a bit in CF.
MOV B,A H 4: Save data.
MVI A, “XDe s 7: To send MARK.
JC - BITO $310/7: Branch if HIGH.
MVI A, X508 H 7: To send SPACE.
BITO:

SIM 4: .

- CALL HOLD 18: Wait 4018 state.
DCR C 4: Bump counter.
JNZ BYTEQO 18/7: To send next bit.
MVI A, “XD8 4: To send stop bit.
RET : It is responsible to

CALLER Routine for

making

an adequate

length of the stop
bits.

WO VO Wo VO We VO we VO we e e
(WY

e %0 g0 ceo oo

- 281 - e

R

CMT INTERFACE ' .

HOLD1 gives
24 * [HL] + 7 (+18)
states delay. (+18) means °'CALL® instruction Status.
So HOLD gives 4043 states delay including °"CALL' of Caller.

® WO We we WO

4 H e -d
HOLD: .
LXI H,167 3 10: For 1 BIT (é906Baud)
HOLD1:
DCX H $ é:
MOV A,L H 4:
ORA H H 4:
-JNZ HOLD1 $10/7:
RET s 1a9:

- 202 -

' CMT INTERFACE ,

11.2.4 Reading A Data From The CM%

Following sample program shows how to read a byte form
CMT. A

Sample Program for Reading a BYTE.
Assume Called with Interrupt disable.

70 ve we we

EAD:
' caLl BITI s 18: Search for start
JC READ $318/7: Wait until Start bit
H ¢ has come.
LXI H,??77 ;s 10:
CALL HOLD1
) MVI c,8 H 7: Read 8 BIT.
BYTEI:
CALL BITI ;s 18:
MOV - A,B : 4:
RLC H 4: Move CF to Bit-9.
MOV B,A. : a:
DOCR c H 4: Bump counter.
JNZ BYTEI $318/7: Read next BIT.
RET .3 18: No check for Stop bit.
;s Get a BIT.
s EXIT: CF =1 if MARK.
3 CF =8 if SPACE.
BITI:
CALL SYNC s 18:
MOV A,D ; 4: Get counter.
CPI 16 H ¢ See whether MARK
H ¢ or SPACE.
$ ¢ If MARK then CF=1,
' H : else CF=4.
PUSH PSW ;s 12: Save CF.
LXI H,?77? s 190: Assume MARK.
JC BITI1 118/7: Good assumption.
LXI H, 7?77 s 16:
BITI1:
CALL - HOLD1 ;s 18:
POP PSW s 10:

- 203 -

CMT INTERFACE
_ RET | S 3419

Calculate Pulse Duration.

o We W

-e we

EXIT: CDJ = loop count in this routine.

L4

SYNC:
MVI 0,36 H 7: Reset counter.
H ¢ Margin is about 18%.
RIM : a:
ANI “X88 H 7: Isolate SID bit.
MOV E,A : 4:Save it.
SYNC1:
RIM : 4: Get Current status.
"ANI “X89 3 7: Isolate SID bit.
CMP E H 4: Same status?
JZ SYNC1 310/7: then wait.
SYNC2:
. RIM : 4: Get current SID.
DCR D H 4: Bump counter,
JZ SYNC 318/7: Too long,Restart.
ANI “X80 3 7: Isolate SID.
CMP E : 4:
JNZ SYNC2 $310/7:
MOV A,D, H 4: Get result.
CPI 11 3 7 Too short?(3%92 state,
: ! margin 208%)
JNC SYNC 310/7: then restart.
RET s 10@:

- 284 -

CHAPTER 12
SERIAL INTERFACE

: PC-8201A has 3 channels of Serial Interface. They are
used by RS-232C, SI0O1, SI02. The difference between SI0O1 and

SI02 is only the shape of connector.

This chapter describes how to control the Serial Port.

.= 285 -

SERIAL INTERFACE

12.1 HARDWARE OF SERIAL INTERFACE- -+

UART(6482) and PPI(81CSS) control the Serial
Interface. Since they are shared “by 3 channels, Only one
channel is available at a time. Refer to the °'PC-8201A USER’S
GUIDE® about capacity of the hardware.

—- 206 -

SERIAL INTERFACE

12.1.1 1/0 Port ' IR

12.1.1.1 Channel Select -—- (System*Coﬁtrol Port)

1/0 Address and Data Pattern

mb7?7 6 S -—0 sb’

tSRIZ2ISRI1I XXXXXXXXXX

ot na *r

e

OUT X998

4o
-+
'
1]
<o
-*

SRI2/1 Serial Interface Select.

SRI2 SRI1 User

%] 8@ =———- Not Used

%] 1 -—=—— SI02 (Disk Driver)
1 @ --—— SIO1

1 .1 =-=-=—= RS-232C

Note: Current status of this port is saved
in SYSSTAT ("XFE44) by System ROM.

- 207 -

|

SERIAL INTERFACE

12.1.1.2 UART Mode Control

msb?7-5 4 3 -2 1 @1sb

+ S R -

+--+

+ + + :
XXXXX 1CLS2iCLS1: PI EPEISBS! OUT “XD8

-t

' sBS

EPE

PI

CLs2/1

e T e s s

Stop Bit Select
@ =1 bit
1 =2 bits (%)

(%) When Data length is 35 bits,
Stop Bits is 1.5 bit.

Even Parity Enable
@ = 0dd Parity
1 = Even Parity

- (Meaningless if Pl = 1)

Parity Inhibit
@ = Parity Enable.
1 = Parity Bisable

Character Length Select

"B = 5 bits
“BO1 = 6 bits
“B1@ = 7 bits
“B11l =

8 bits

- 288 - e

SERIAL INTERFACE

+ 12.1.1.3 UART Statls Read’

I1/0 Address and

ms

It =3

Data Pattern
i ad

4 3 2 i @6 Isb

ade

XXXXX

FE OE idcd/dr IN “XDB

+--40

decd/dr

FE
PE
- TBRE

4+ 4+
+--+
+--+0

1 TBRE:! PE

L L

DCD/DR on off (B=on/l=0off)
Qver-run Error (l1=Detected)

Framing Error (1=Detected)

Parity Error (1=Detected)

Transmit Buffer Register Empty
1 = Ready to receive data to transmit.

- 289 -

SERIAL INTERFACE

“12.1.1.4 UART Baud Rate (PPI 81CSS Timer Section)

I1/0 Addrexd Data Definition
g
¢ msbé S5 4 3 2 "1 7@ 1sb

. e - 3o e d.

:&2 :T133T12:T11£T183T99!f08! OUT “XBD

ETeélTGSfT045T03€T02:T81:TGO: OUT “XBC
4 + + + + + +———t

P Specify timer output Mode

“BgO = Single Square Wave -
“B@1 = Continuous Square Wave
“B18 = Single Pulse On

“B11 = Continuous Pulse

e

-
set a Baud Rate use blaw value.

ud Rate E “XBC E “XBD _-T
75 i o0 E a8 -E
15¢ @ &8 ! 45 !
36 | 00 E 42 E
600 E 68 ! 41 i
1200 : g0 E 49 E
2400 ! 40 E 2 i
2408 | 4o E @
480 E 20 i 4o N
9608 -E 16 i a8 i
" iszee ! es i a8 .
+ ——tm—— e +

Fig 11.1

- 210 -

SERIAL INTERFACE

NOTE:

. It is impossible to read the current UART
status directly. ROM #8

o always saves the new status in RAM when it is changed.
Refer to Chapter
12.30

- 211 -

SERIAL INTERFACE

$ I/0 Port and BData Pattern Tt

msb l1sb

i - s < b o b b
> - - * -+ L <+ -

307306305104:03102:01:DG! IN/OUT “XCB
tomto—dm—to e t—t——t——+t

Note:
If the data length is less than 8 bits, Cutput
data must be right justified. Input data is right justified

- 212 -

' SERIAL INTERFACE

12.2 SOFTWARE DESCRIPTION.

12.2.1 How To Initialize Serial Poért

The basic sequence to initialize Serial Port is as
followus.

1. Select Channel
2. Set Baud Rate.

3. Set transfer mode.

Following Sample program shows the Initialization sequence
more detailed.

The sample program listed blow explains how to
initialize serial port. This sample program Initialize
RS-232C Channel as 9600bps, even party,?7 bit data length,l1
stop bit and no contrel for Xon/Xoff,SI/S0. And it Updates
work area for ROM#8 can be use the same mode. You may skip
that portion if you want. They is no problem even if you skip
the updating the data,because ROM#@ always initialize RS-232C
Port when entering to Term mode or "OPEN °‘COM:'® -of Basic
command is issued by the Mode string.

- 213 -

SERIAL INTERFACE

13

-=§

12.2.1.1 Sample Program ... How To Initialize SERIAC Port

- . - | [

Sample Program Initialize Serial Port.

s Data in system area which you must update.

ERMOD EQU

oo we we we we we (f)

COMACT EQU

SYSSTAT EQU
BAUDRT EQU
address.

INHBIT EQU

“XF48é
“XF486
“XFag?
“XF4es8
“XFag9%
“XF49A
“XF408

“XFE43

“XFE44
“XFE4A

“XFE44

$ /0 Port Address.

'scP EQU
PORTB EQU
TIMEL EQU
TIMEH EQU
RTSDTR EQU
INITSERI:

ENTRY: CC3
£B3

e we we

LDA

“X9@
“XBA
“XBC
“X8D

“X3F

USER ID.

é bytes for MODE string.
Baud rate Specifier.
Parity Mode.

Word Length.

XON/XOFF contorl.

.S1/S0 control.

WO wWe We W WS we VO

current user [0 for
serial port.
“BYQ = Not used.

“Be1 = SI02
“B1@ = SIO1
“B11 = RS-232C

SCP port status.
Baud Rate Table entry

We VO Ve we Vo e WO we

8 inhibits XON/XOFF control.

System Centrol Port.
RTS/DTR set port.
Timer Set Low.

V4 /7 High.

.o we wo weo

RST/DTR data for RS-232C.
Use “XFF for SI01/2.

e we

Baud rate specifier. ASCII Number (1 to %)
Same Number of °‘STAT® of TELCOM.

COMACT

- 214 -

-— See if Serial Port is available.

; Get current user ID.

SERIAL INTERFACE

ORA
JZ
CMP
JZ
‘. " STC
: RET

SELECT:

; -— Reserve Serial Port

DI
MOV
STA

RRC
RRC
MGV
LDA
ANI
ORA

ouT
STA

;~- Set BAUD RATE

SETBAUD:
MOV

. STA
sgl
RLC

LXI
MoV
MVI
0AD
SHLD

MOV

A .
SELECT
c
SELECT

A,C
COMACT

C,A
SYSSTAT
8890111111

SCP
SYSSTAT

A,B
SERMODE
l1l

H, TIMTBL
c,8

B,0

B

BAUDRT

A,M

- 215 -

'
o
-e ‘.‘ e we We weo

WO VO We Ve we Ve we Ve we

o WO we Ve we VO we

e WO we VO we WS v

we

w8 WO Ve WO we WE we Ve we

-3
No one use Serial I[/07
then branch.

SAME USER?

Then branch.

Set Error FLG.
Return to caller.

Inhibit all disturbance.
GET USER 1ID.

Set User ID. Be sure reset
Use ID to @9 after all task
finished,else the serial
port

can not be shared to
another user.

Move Bit8-1 to Bit 6-7

Save it. .

Get current SCP status.
cancel channel control.
Set new channel control
bits.

Select channel.

Update SCP status. .

Get BAUD RATE ID.

Update Baud rate Specifier.
Convert to Binary Number.
%*2,Because table entry is
2 bytes.

CC] = QOffset

Save entry point for
Music routine.

Music routine in ROM #@
destroy temporary changes
the timer count and
reinitializes it with
this entry data after
finish.

Refer Chapter 12.3

Get Lower value.

SERIAL INTERFACE

A
H e

ouT TIMEL H
INX H :
MOV A,M : Get Higher Value.
ouT TIMEH

& - MVI A, “XC3 s 3 -Jo start timer.
outT - °XBS Use this value to

“-e we

start Timer.

1

3+ SET TRANSFER MGOE.

MODE s
IN PORTB H
ANI RTSDTR s IF 232C RTSDTR="X3F to
3} activate RtS/DTR,
; else “XFF to unactivate.
ouT PORTB
IN “XCcs8 3 Dummy read to clear
;s Receive Buffer Register.
MVI A, BeoB8B1110 ; 7bit,Even Parity,l stop bit.
ouT 608H ; Set Mode.
;3 -- Update SERMODE
LHLI SERMODE+1 ;s Set PTR
MVI M, 'E* ; Set Parity check mode.
INX ° H
MVI M,*?7° { Set Word length.
INX H
MVI M,"1° ; Set Stop bit length.
INX H
MVI M, "N° : Set XON/OFF control mode.
INX H
MVI M, *N° 3 Set SI/SO control Mode.
XRA A s Set CF=8
g;A INHIBIT ;s Disable XON/XOFF control.
RET
TIMTBL: DB “X08, “Xx48 H 75 bps
8):) “XéB, " X4S H 150
0B X808, “x42 H 369
8):] X80, X41 H é00
(8]:] “X80, X408 s 12990
DB “X49, X498 s 2409
DB “X28,°X48 s 48909
8]=] “X10, X408 1 96409
8]} “Xg8, “X40 ; 19260

- 2186 -

| SERIAL INTERFACE

12.2.2 SEND A Data To The Serial Port

4 - The sample program shown blow describes how to send
‘ data to the serial port. It performs no XON/NOFF and no SI/SO

control.

SEND A data to the serial port

ENTRY: L[C1 = DATA TO BE SEND

WRITE: 4
IN “XD8 ; Get UART status.
CPI ~B0G01089) ; See if transmitter buffer
p_— { register Empty?
JZ WRITE ;s Wait TBR become empty.
MoV A,C 3 Get character to send.
gg$ “Xcs i Send it to the serial port.

- 217 -

SERIAL INTERFACE

12.2.3 Read A Data From Serial Port.

RY . . Sample program shown blowiexplains how to read data
from serial port by RST6.5. This sample only read data form
serial port with RST6.5,no0 XON/XOFF and no SI/SO0 control is

performed.

;%% Read a data from Serial Port.

1Read a data By RSTé.S

Entry point of RSTS.5

ORG “X3C H
RSTéS: DI
JMP READ
ORG ??7?
READ: V ;
PUSH H ; Save registers. :
PUSH D :
PUSH B
PUSH PSW
IN ~“Xcs 3 Read the data
IN “Xp8 : ; Get error status.
ANI “BegEB1110 ; Strip error bit.
MOV H,A H
SHLD BUFFER
POP PSW : Restore Registers.
POP B
POP D
POP H
EI
RET
BUFFER DS 1 ; Got Data.
0s 1 ;s Error status.

- 218 -

SERIAL INTERFACE

12.3 AVAILABLE SYSTEM AREA. ~

- e : You may want to use thé syétem area for your use. In
this section, the available work area of ROM #8 is described.
Make sure to keep the compatibility with System ROM, if you
want use this area. '

Serial inﬁut Buffer from “XFE4C +to “XFFC3, 1is reserved by
System ROM as SERIAL Input Buffer. And You can use it for
your own routine. .

SERMOD saves their RS-232C mode string
This area has é bytes data which inaicates the RS-232C

String Mcde, specified by °STAT" command in TELCOM or OPEN
"COM: " command in BASIC. The contents are following.

SERMOD at “XF486 DSé RS232C String mode Buffer

“XFa0é 3 Baud rate specifier (1 to 9)
“XF487 s PArity Mode (N/E/C/I)

“XFags ; Word length specifier (S to 8)
“XF499 s Stop bit (1/2) ‘
“XFavA ;3 Xon off control (X/N)

“XFag@B 3

SI/S0 control (S/N)

INHIBIT (at “XFE42)

This byte is the XON/XOFF Inhibit Flag. 8 inhibit
XON/XOFF control,else enabled. .

COMMACT (“XFE43 Byte)

This byte indicate who is using serial port as blow.
Please reset to 0 after using the serial port,
otherwise the serial port is not available for another
user. ‘

“X88 = No user
“X81 = SI02
°X82 = SIOo1
“X83 = RS-232C

- 219 -

SERIAL. INTERFACE

CMPNT (at "XFE448) DS1 ;3 Character count in Buffer.

This byte has the character count in Serial
Buffer.

REDADDR (“XFE46 Byte)

This byte indicate last read character displacement.

WTADR (“XFEA7 Byte)

This byte indicate last written character
displacement.

BAUDRT (“XFE4A)

This points the table of the Baud rate. Refer to the
Chapter 12.2.1.1 Sample Program. '

- 220 -

- gp— .- -

CHAPTER 13
BARCODE READER

This chapter explains Electric specification and Basic
theory of Operation of the Barcode Reader.

The Barcode Reader program included in the PC-82€1A
Personal Application Kit assumes that operation is deone uwith
the HEDS-3871(produced by HP Cocrp.) .

13.1 ELECTRIC SPECIFICATION

Refer to the °"PC=8281A USER’S GUIDE' about the shape
and Pin Connection of <the BAR Code interface and electric
specification.

You may connect any Bar Code Pen to this interface.
But NEC recommends the products of YHP(YOKOKAWA HP) or (MECANO
Kogyo) and it is better that the Pen has the Power switch, for
saving the electric power of the PC~8201A.

The data line of Barcode Reader is connected <to the
Pin=2 of BCR. And this pin is connected to the RSTS.S of
CUP(88C8S) and Port C-3 of 81CS5S as shown blow.

! S .5’0335 .
. in‘g ¢ *% ‘ 2 =roy
B
P“)
;_ GND EYE3 ZICSs]
GNS {5) . ==
A v - l ?,,.:c’_'-" -~a2 .
Vee o 7 1 Red]’ - | F'_lg (3.1

- 221 -

BARCODE READER

!High respectively,

While the Barcode Reader “is pouered on, PIN-2 is kept
as low level, and RSTS.S is High.

BLACK BAR is represented by logical Low, SPACE BAR by
. . 4

13.2 THEORY OF OPERATION

This section describes the basic sequence of the
reading data from Barcode Reader.

1. If power on. RSTS.S is activated. At the first point of
the RSTS.S routine which is interrupted by RST3.5 disable

all interrupt.

2. Pole the Bar Code DATA port. And calculate the duration
of same status and save the status and DOuration.

3. If Low level continues too long assume that Power off and
enable

4., QDecode the got Data and transfer the data to the upper
routine.

- 222 -

CHAPTER 14
PARALLEL INTERFACE

This chapter describes how to control the
Printer Interface of the PC-8201A. It is the
Centronics compatible a 8-bit parallel interface.

14.1 HARDWARE SPECIFICATION
14.1.1 Physical Interface Of PC-8281A

PC-82861A has the Centronics compatible
parallel interface. It uses 26-pin connector.
Refer to the PC-8281A USER’S GUIDE about the Pin
connection and signal name.

14,1.2 1/0 Port For PRINTER Interface.

14.1.2.1 Port A -—-- Data Out Put Port For Printer.

Isb 7 6 S 4 3 2 1 8 1sb

e . . - dm 3o -n

:PD?lPDé}PDS:PDAlPDB:PDZ:PDI?PDG: OUT ~XB9

- 223 -

PARALLEL INTERFACE

PD7 to PDG —- DATA output to Printer.

NOTE: This port is used by another user.
- 4

14.1.2.2 Port C ---- BUSY,SLCT Signal Read

msb 7 6 5 4 3 2 1 8 1sb

Bt s st R + tm———t

PXXIXXIXXIXX XX IBUSYISLCT! XX | IN “XBB

1
s St et s S 2 + + +

BUSY --—- 8 Printer READY
1 Printer BUSY

SLCT =-- @ deselect
1 Select

14.1.2.3 SPC(System Contrd] Port) =--- STROBE OQutput

Port

msb 7 6 S 4 3 2 1 09 lsb
e e s o e e o et o o o o e e e o
IXXIXXIPSTBIXXIXXIXXIXX XX OUT “X99
s s s TS

PSTB --—- 8 Strobe OFF
1 Strobe ON

~ 224 -

PARALLEL INTERFACE

14.1.3 Basic Theory Of Writing A Bata To Centronics

The basic sequence tdﬁ write data +to the
Centronics printer is as follows.
1. If Printer is busy, wait a while. Otheruise go
ahead. .
2. Output a byte to the data lines and hold it.

3. Change the strobe level to low.

4, Wait a adequate duration holding the DATA.

S. All has been done, then finish else repeat from
(1).

The timing chart illustrates the sequence.

Parallel __XXXXXXXXXXXXXX_________
DATA “>IT1iC= =>1 T2 i<~
S eeee——— + +
DATA ->1 T3 K-
STROBE pm——— +
BUSY ! v
+ tm———
T1,T2 >= 1.0 uSec
1.8 uSec < T3 € 48QuSec

Fig 14.1

Refer to the Manual

of Printer about the
actual Duration of T1 to T3.

- 225 -

PARALLEL INTERFACE

14.2 SOFTWARE SPECIFICATION
- 314.2.1 How To Urite A Byte To The Printer.

) Tiny program shown blow explains how to send a
character to the Parallel port. That sample Program does
same function as Basic command,

LPRINT °*ABCDEFGHIJ®

e weo weo

660800
$—— Equater -—-—
SCP EQU “X90 : System Control Port.
PORTA EQU “XB9% $ Printer Data Port.
PORTC EQU “XBB 3 Printer Status Port.
SYSSTAT EQU “XFE44 ; SPC status.
START:
LXI H,BUF s Set PTR.
MVI C,16+2 ; Set data length.
PRINT:
IN PORTC ;1 Get Printer status.
ANI é ;s Strip BUSY,SLCT bits.
XRI 2 3 See if ready.
JNZ PRINT s i1f not,then wait.
DI $ Inhibit disturb for Port A
;s of 81CSS5.
MOV AM ;s Get character to Print.
ouT PORTA . s Put data on the DATA line.
LDA SYSSTAT ;s Get SCP status.
MOV B,A ;: Save It.
- ORI “B001060BG2 ; Set STROBE.
ouT SCP :
ouT SCP
MOV - B, X933 Please set appropriate

we we

value for your Printer.

- 226 -

PARALLEL INTERFACE

WAIT:
OCR B
JNZ WAIT
EI

. . - |
_ INX - H s Point to Next

DCR C .
JNZ PRINT
RET

BUF: DB “ABCDEFGHIJ”
0B . 13,16

END

- 227 -

CHAPTER 15
HARDWARE

o to another technical manual about the detail
specion of PC~-82801A s hardware. That manual has already
been py NECHE, Chicago., Please contact with them. In
this ¢, only most important data is listed up.

- 228 -

HARDWARE

1S.1 SYSTEM SLOT
15.1.1 Assignment Of Signal

PR . P 2 ..." g -=;) =
LTSN g e T e e emmeame
-+ System Slot
N ’ SYSTEM sLoT il
- I
] ~ I ERHHNEIE A RALH
r—[Sﬂiggﬁgggﬁﬁnﬁasuﬂﬁé:aaﬂ L
_1 w— N— Jf—
7 A
'Y n
i i :
Pin number | Signal name l' Remarks
1 voD +SV
2 voD +5V
3 ADQ Adcress/Data 0
4 AD4 Addraes/Data ¢
5 _ AD1 Address/Data 1
6 ADS Address/Data 5
7 AD2 . Addrass/Cata 2
8 ADS Address/Data 6
g AD3 Addcress/Data 3
10 AD7 Address/Data 7
11 NC No Conneczion : B
12 NC | No Cznnection
13 A8 Adcress 8
14 Al2 Addrass 12
Fig 1S5.1
- 229 -

HARDWARE

Pu: ;1.u.mber Signal name Remarks
15 A9 Addrass 9
16 A13 Addrass 13
17 A10 Address 10
18 Al4 Address 14
19 All Address 11
20 Ai3 Address 15
21 A16 No Connaction
22 A18 Na Connection
3 A17 No Conn;ac:ion
24 A8 Mo Cannsction
25 NC N¢ Connection
28 | NC No Connection
27 RO Read.
28 WR Write
29 10/M 10 OR Memory
30 ALE Address Latch Enable
31 HOLD . HOLD
32 HOLDA HOLD Acknowledge
Fig 15.2

- 2396

HARDWARE

= VoL - —— - 4

Pin numbar Signal name Remarks
33 INTR INTERRUPT
34 INTA INTER Ackncwiecga
35 RESET RESET
36 READY READY
37 ROME RCM .E:'.able
38 E Enatie
39 BANK=3 RAM Cassette Select signal
40 NC No Connection
a1 HADRD High Address Disable
42 LABRD Low Address Disable

° 43 | CLK Clock |
44 POWER RAM Protect signal
45 GND Ground
46 GND Ground
47 NC No Connection
48 NC No Csnnection
Fig 15.3

- 231 -

HARDWARE

15.1.2 Exp]anatioh Of Pin

t 15.1.2.1 Function Of Signal : e

Vdd (Out)

If you don’t use the BCD, this Pin can supply with
the current of S8mA or so.

ADB-AD7 (In/COut)

Lower 8 bits of the memory address (or [/0 address)
appear on the bus during the first clock cycle of a
machine cycle. It then becomes the data bus during the
other cycles. ‘

A8-A15 (Out)
The most significant 8 bits of the memory address or
the I/0 address. The output goes off during Hold mode,it

then becomes "H' level, because it is connected to a pull
up resister (100k Ohm). inside.

/RD (Qut/3-state)

The read control'signél, 3-state during Hold mode.

- /WR (Qut/3-state)

The write control signal, 3-state during Heold
mode.,

IO/M (Qut/3-state)

When this signal is 'H' level and L’ level,

- 232 -

HARDWARE

9.

10.

11.

12,

respectively, the CPU have access to the I/0 and the
memory. 3-state during Hold mode. .

. a ~%
ALE (Qut/3-state)

It is used to strobe the address information
(ADB-AD?). 3-state during Hold mode.

HOLD (In)

The CPU, wupon receiving the hold request, will
relinquish the use of the bus as soon as the completion of
the current bus transfer. UWhen the Hold is acknowledged,

the /RD, /WR, 1I0/M, ALE 1lines are 3-stated and the
AD8-AD1S lines are ‘H' lewvel.

"HLDA (Out)
It indicates that the CPU has received the HOLD

request and that it will relinquish the bus in the next
clock cycle.

INTR (In)
The general purpose interrupt. It is sampled only

during the next to the last clock cycle of an instruction
and during Hold and Halt states. .

/INTA (Out)

It is used instead of (and has the same timing as) /RD
during the instruction cycle after an INTR is accepted.

RESETO (Out)

It indicates CPU is being'reset. Can be used as a
system reset. - :

- 233 -

HARDUARE

13. READY (In)

If it is ‘L", the CPU will wait an integral .number

of
clock . cycles for it to go "H' before completing the read
o aramsl e O Write cycle. - | gy b

14. /ROME (Out)

The enable signal for
general purpose.

is 8, it goces °"L°.

external ROM cartridge or
When the upper 4 bits of the I/0 address

40H 138
Y2 RCME
o/ ———&t Yi TONTROL
: W ‘——E*? Y - oAMNK
Y3 — 755
Ad ——C Y4 §502D
‘Al =3 Y§— 302
AiQ =——A Yé—K
Y7——LC
Fig 15.4
15. E (Qut)

It is used as a memory enable signal of the read or
write cycle.

s E is the logical OR (active high) of /RD and
JWR, ‘ 4

- 234 -

HARDWARE

16‘

1v.

18.

19.

29‘

/BANK 3 (Out)

The memory enable signal of external RAM cartridge.
(See next section)

- . = -4

HADRSD (IN)

- If it is "H',the memory of high address (°X8868 to
“XFFFF) in PC is disabled. (See next section)

LADRSD (IN)

If it is "H',the memory of LOW address (°X8 to “X7FFF)
in PC is disabled. (See next section)

CLK (Out)

2.S5MHz clock output. It is the same phase as CPU
clock.

POWER (Cut)

It is the signal /RESET (connected to the CPU) is
reversed. ‘

- 235 -

HARDWARE

15.1.3 DC Characteristics

Symbol i Drive capacity (mA)]
AD@-AD? r 4.4
A8-A15 ' 4.4
/R0, /7WR, IC/M :
ALE,RESETO ' 4.4
HLDA, /INTA,CLK : 2.9
E,/ROME,/BANK 3 | 1.1

Fig 15.6

- 2346 -

HARDWARE

k]
N .Eu-mxu R L T
powsogaad qou st 3jphs Jom 114, TR avay.
(apv
. I!ll,A ht—ﬁ
|] Aavil
4 X Ay
L. «Ew :
—— A ” .#u
§ 4 Y.LNI gy
. ~ 4 - >t n
73 .‘II- fl*. .v ?
) -1 ul AL U7 Rm _
_ . Jv ! n-
w Illﬁnu.w'...l\l e) GNJ " o m
it . “ n | . L4 d: 1 m” |
t .I.I“ NUVIva (/7 “ 1777 ssufaay | t-oqy |
.m.. ' r.-J [
u . - L
b y : sSddy -8y
L — s] a1z i ;
c —_ e)
5 Lo N e B
0 o | B .
< _ £L 1 _ 2L _ " _
4]
- Vo g
i~ {
] .

q.

tW)SAS aseq ay e
prerpaad Jou sy 9o pom g4,

TIAD 1raym

HARDWARE

(apon
. — hﬂ-u
, R ’ Aqvy
I _— A e— —
JuN . r-u-lgjﬂwl * -3
9 s
¢ e | _ L
u) .Cs u .—.Su Tl - .-.w~nv .
- !) N .
4y | ~ty _ v
“ et f]
] 1o vivg _ SS3vday ﬁ Logy
*] —All:ﬂu!lv
_. p $S3Yaay ° K si~gy
- ST
) S Dy R e T B I e I
4_ b _ Liva] _ el _ L _.,
" ,
fr
{

LR

Fig 15.8
- 238 -

HARDWARE

% digrezars Twur

min (aS) typ (nS) max (n$)
tere = Y407
frex 112
ta 112
TaL Ti
te | 142 |
ta | 42 |
taz 87 !
te i73 !
tas ' 3
toon 53
to 334

tee ; 52§

et i 162

taou ‘o

twoe yiy
ta | 2

two | 8

tow Ky Ky

teow | Lz
Sarr 'r 5 333
tar | | 6
tws | M0 !

Bave % 0 ! l

Fig 15.9

= 239 -

4 bk aTe WES

HARDWARE

15.2 MEMORY CONTROL CIRCUIT

RAM #n means the chip number the

In this section, on

main board.

| The memory of PC-8281A consists of RAM 16K and ROM 32K
bytes,and can be expanded to 48K bytes on optional RAM socket
(RAM Chip #2- #7) and to 32K bytes on user ROM socket (RCOM #1)

in PCo

Show the composition of memory in Fig 15.11 RaM Chipe
(#3- #7) and ROM (#9- #1) is connected to the same DATA bus

and their outputs are controlled by /CE and /BANK signal.
There are five banks of BANK #Q(available RCM #@), BANK

#1l(user ROM #1), STORAM(available RAM #@- #1 and optional RAM
#2-#3) ,BANK #2 (optiomal RAM #4- #7) and BANK #3 (RAaM
Shouw the bank control circuit in Fig '15.12 By

cartridge).
of this, you can assign each back to the memory address

means
in 64K bytes area of CPU shouwn in Fig 15.13 and Fig 15.10.

Address STDRAM .. BANK#2
AXFFFE. .- §
| RAM # 1 : RaMz7 |,
AX EZ22 . ' |

DFFE , ' T
N, Coso . J : ¢ :
AX BFFF r - :

' | RAM 22 Mzs |
MK Agga_ * ' e
AKX 9FFF X :
| RaM 2 2 |
X §900 : RA RAM#4 1
| S option

RAM oaddrecs

- 248 -

HARDWARE

¢eccen

; RAM RAM

bow v mineadagd

STORAM BANK22 BAMKE2 | !

ROM RGM oM
SANKZD BANK T saiy |

pececccccccrscctscaccccmcsnce

l .] T
: ! .
R N A RaM L ORAM
i) SToREM | 2ANKE2 s BANKSS
i ! : i .
. . . :
. i |
V| oM) A0M e B
s BANKE] anKa! SaNk#E! |
: | :
L >

es eeee e esssoen s cene noew

& < &

AXFFFE
NX €329

INETLT]

The areg within Jotied line

M 2229

Formomccranc ey

ie agtiorai memory.

G z

P r sl
Variaty of memory comgasition

Fig 15.18

- 241 -

HARDWARE

ST Jo vurjisedney

4

N1 200
LRIV
- EfAnvy
SuNYg
Hwuul.s
L\ \\ \ I N
-)
L]
: Setiol R oy Jd seitivp
- :_/M T I 5 ~aq [
| B AN o el T ey
viva . _
»x "w oy .2..&_!: <} e <_.... oly~oy Inbel b .a... | ¥
\Joé' o .\V‘A.. t < N
~A' o3). 8
1 i~ v.. |~ > =
: Al ~Fs k [
v o) J \ \] w 1 —
{7 . ,w.. ,w i ' o
33 B I~ B~ o |
’ " X Jxs R 1N Al i
1 s] 3
AL : it- . N o 44 . S {1 L/\‘
1v~oy ., v ojy ~oy } viv--oy 9 oiv~ov_ | L
n 'y -a—:s--ov M B . i Ly <
2oy | toot—rdas ¥ b ey 3,5 vt = o 8_ ‘o 3
ta~0q tq~ag i s A9 La~oq
d Rttt >Seaent T
seniop 17T seiiop - sE1Hop 91T
,

- i

[T

hy

gy

Fig 15.11

- 242 -

HARDWARE

-
— 4
0/ M ey
IAL? —C
(SRS < = cimem
fr R gopng § _
Ya - ZANKEZ
Aza ‘ 014 A Y INKA |
2 — —
AS)] '29 2q, 3 Yie— ___D——’ ZANK %2
432 ' Eb| aol 1 STTaaA
l | 7T
» ! - in - - | N
AT3 ; 44q—., -] E_.D__»m
: —7 :
|

,.." M¥ ' 3 l
7 | 20x:39
| o

R

iioc:"(.'z
,

Bank Contrel Circuit

Fig 15.12

Variaty of memory composition

EX=00[QI210 9.9
LaBRI {0 |0 fojolojo)l|!
LRz lofolofr{r]rjalt
H&ORIJ Ot j1 ol 160
HADR2 | O fO |1 (00T]0]0

- 243 -

)

HARDWARE

The way of bank conversion by softuware control
illustrates in next section. When PC is reset, it becomes any
mode (before reset)of the composition No.1-3. But in the case
of nothing of optional RAM BANK #2- #3, it can become only

3 No.l1l mode. If optional ROM is-installed, another composition
No.4-6 are possible. Further, as it becomes the mode of 64K
bytes full RAM by optional RAM BANK #2- #3, you can use a
CP/M, etc.

- 244 -

HARDWARE

15.3

[/0 ADDRESS

(Address is expressed in Binary.) i

I1/0 address! In/Outi

I1/0 device:0Operation

868eeeRe | :
' H H user
\v ' H
1011111 | :
8116006066 | H
Vo ' v NEC reserve
V- ! :
61111111 |} H
1806XXXX | O ! NEC reserve (ROM cartridge
' i or general purpose) A decoded
H i signal appears on /ROME pin.
1881XXXX | O ! D-FF ! System Control
' ! i ¥Cassette Motor Control
: ' i ¥Clock Command Strobe
H ' { ¥Printer Strobe
“ ' i ¥Serial I/F Select
1818XXXX | O | D-FF | Bank Control
1818XXXX + I + 3-8 |
H i -Buff! Bank Status
] : i1 *¥Bank Status
H H 1 %*Serial I/F Select
: ' ' Status
1911X@ge 11/0: PPI v
_ : 81C35! Command/Status Resister
1011X@81 ! O Port A Output

- - e ma m— W - - -

*.CO Chip Select
*Printer Data
*Keyboard Scan Data
%¥Clock Command/Data

- 245 -

- e - - - - —— - - -
R Se TR am SN ee e TS T L TE e Tt Gk T ce TE RS T an e BE "% we e BE e em T® @ e -

HARDWARE

- 246 -

! 1911X@616 | O | i Port B Output '
H H H i %#LCD Chip Select H
' : ' i *¥Buzzer Control H
] H H i %¥RS-232C Control :
H H H { *Ayuto Power QOff H
H ' ! H Control :
i 1611x611 ¢ I | i Port C Input '
H H : i *Clock Data H
: H H i *¥Printer Status :
H H ! ¢ %*BCR Data : H
H H H i %#RS-232C Status H
i 1611X169 | O | i Timer Resister :
: : . H (lower 8 bits) ‘
: H ' 1 ¥Lower 8 bits of counteri
i 1611Xx181 1 O | i Timer Resister '
HE H H H (upper 8 bits) H
H H H | *Upper 6 bits of counter)
H H H i ¥Mode Select H
i 1108XXXX 1I1/0% UART E
' ' i 6482 Data Write/Data Read :
P1181XXXX VO i Control :
P 1101XXXX I ! 3-8- | E
: H i Buff! Input Port :
H H H i *UART Status H
H : : i *¥Low Power Signal :
V111XXXX VIV 3-8~ |} 5
' H i Buffi! Keyboard Input '
v 1111XXX9 | 0 i LCDC | Command Write/Status :
s H H H Read H
v 1111XXX1 f O i Data Write/Data Read '
Fig 15.14

HARDWARE
15.3.1 Detail Information About I1/0
This following is the particulars of each Function;

The I/0 address is shown in the number which is used really in
4 system. = - - -

15.3.1.1 Reserve Area

As this area is reserved for NEC,don 't use it.

15.3.1.2 System Control

110610606 8 6! OUT X908 . %

g é S 4 3
- 1SELAISELBIPSTBITSTB:REMOTE!
REMOTE CASSETTE MOTOR CONTROL

9 motor Off
1 motor On
TSTB CLOCK COMMAND STROBE
" - Strobe Off
1 - Strobe On
PSTB PRINTER STROBE
) Strobe Off
1 Strobe On
SEL A SEL B SERIAL INTERFACE SELECT
] %] Not used
%} 1 SI02
1 %) SI01
1 1 RS-232C

- 247 -

HARDWARE

15.3.1.3 8Bank Control

< 118108088061} OUT ~AL " -

3 2 1 @
: {HARD2 HARD1 ! LADR2 ! LADR1 !

LADR 2 LADR 1 SELCT ADDRESS “X8 To “X7FFF

%] e Bank #@ (ROM #8)

%] i Bank #1 (ROM #1)

1 e Bank #2 (RAM #4 - #7)

i 1 Bank #3 (RAM cartridge)

HADR 2 HADR 1 SELECT ADDRESS

’ (°X8888 TO “XFFFF)
Standard RAM (RAM #0 - #3)
Not Used

Bank #2 (RAM #4 - #7)
Bank #3 (RAM Cartridge)

RO
Y

i DA -

HARDWARE

15.3.1.4 Bank Status

T y 110100 06 00 IN “XAB

g

7 3 2 1 ¢
BIT 1 BIT © STATUS OF ADDRESS
("X8 TO “X7FFF)
) %) Bank #@ (ROM #Q)
7 i Bank #1 (ROM #1)
1 %) Bank #2 (RAM #4 -~ #7)
1 i Bank #3 (RAM cartridge)
BIT 3 BIT 2 STATUS OF ADDRESS
("X88088 TO “XFFFF)
9 0 Standard RAM (RAM #8 - #3)
%) 1 Net Used
1 %) Bank #2 (RAM #4 - #7)

1 1 Bank #3 (RAM cartridge)
BIT 7 BIT 6 STATUS OF SERIAL INTERFACE
7]) Not used i

%) 1 SI02
1 e SIO1
1 1 RS-232C

- 249 -

HARDUWARE
15.3.1.5 PIO0 81CSS Address

%Command / Status Resister
4 . i -

11011100 68! IN/OUT “XB8

%Port A output

11211100 1! OUT “XB?

7 6 S5 4 3 2 1 e

1PA7IPASIPAS IPA4 I PASIPA2RIPALIPAG,

1PO7:1PD4IPOSIPD4IPD3IPO2:1POLIPOL

IKS71KS61KSSiKS4!KS3!KS2!KS1!KSa !

'CCK:iCDB!C2 iC1 :iCO !

PA7 to PAG LCD Chip Select
PD? to PDO Printer Data Port
KS7? to KS8 = Keyboard
C2 to CB Clock command Output.Port'
CD@ Clock Data Output Port
ccK Calendar Shift Clock

8 ' Clock Off

1 Clock On

*Port B Output

118111610 OUT “XBA

-25¢ - .

HARDWARE

7 6 5 4 3 2 1 e

ot i 1DCD/i-=t i
{RTS!DTR!BELL:APOIRD IMC!PB1!PB@!

4 * —]

H 1KS8!
PB1 —- PBG LCD Chip Select
MC MEMORY CONTROL OUTPUT

e On

1 Off
DCO/RD DCD/RD SELECT OF THE RS-232C
e Ring Detect

1 Data Carrier Detect
APQ AUTO PQUER OFF OQUTPUT

) OQutput OFff .

1 Output On
BELL BUZZER OUTPUT

%)) Ring

1 - Not Ring
DTR RS=-232C DTR output Active Low
RTS RTS output Active Low

- 231 -

HARDWARE

*Port C

CDI
SLCT

BCR

CTS

DSR

Input

1191110811} IN “XBB

-3 4
s 4 3 2 1 e

{DSR!CTS!BCRIBUSY SLCT!COI!

Clock Bata Input Port

PRINTER BUSY

Printer Ready

Printer Busy
Bar Code Reader Data Input Port

CTS Input Active Low

RS-232C DSR Input Active Low

- 252 =~

HARDWARE

%¥81CSS5 Timer Resister

'1 81111808 8! OUT/IN “XBC
A : - = =

7 6 S 4 3 2 1 0
ITL7!TLOITLSITLAI TL3ITL2ITLL1ITLG!

TL? == TL8 Timer Counter Lower 8 bit

11811118 1! OUT/IN “XBD

7 6 35S 4 3 2 1 @

‘M2IMLITHS THA) TH3 I TH21 TH1 ! TH@E !

THS == THE Timer Counter Upper 6 bit

M2 M1

%) e This mode transmits a single-
square wave which the first
half of the number of count
is high and remaining is low.
(Mode 8)

%) 1 This mode continually transmits
: a Mode O type sgquare wave.
(Mode 1)

1 e This mode transmits a L-pulse
(single pulse) during one
clock when finishing the
terminal count. '

(Mode 2)

1 1 This mode continually transmits

a Mode 2 type pulse.
(Mode 3)

- 233 -

HARDWARE

15.3.1.6 UART Data /0 Port

11108106 8 8 INOUT %XCS

UART DATA PORT

15.3.1.7 UART Control Port

%Command Write

11611068 06! OUT "X08

1CLS2!CLS1IPI EPEISBS!

SBS

EPE

STOP BIT SELECT

Stop bit length is 1 bit
Stop bit length is 1 bit.
If data length is S bits,

stop bit length is 1.5 bits.
In the other case, it is 2 bit.

EVEN PARITY ENABLE
Odd Parity

Even Parity

PARITY INHIBIT
GCenerate parity and check

Inhibit generating parity

- 254 -

HARDWARE

and check

CLs 2 CLS 1 CALENDAR LEPGTH SELECT

0 e Data Length 5 bits
0 1 Data length 6 bits
i @ Data length 7 bits
1 1 Data length 8 bits

- 235 -

HARDWARE

DCD/RO

)

1

CE

FE

PE

TBRE

LPS

%¥Status read

11081100 8! IN "“XD8

- - s

7 4 3 2 1 @
'LPS) ' TBREIPEIFEIQE} =— /-=i
d i : ¢+ + + DCD/ RD:

Data Carrier Detect/Ring Detect
On
Off

Overrun Error

Detected

Framing Error

Detected

Parity Error

Detected

Transmitter Buffer register Empty

ready to receive data to transmit

LOW POWER SIGNAL

low power voltage

- 256 -

HARDBWARE

15.3.1.8 Keyboard Input

=4 . 111181088 IN-“xes’’

15.3.1.9 LCDC Address

% Command Write /Status Read

111111118 IN/QUT “XFE

* Data Write/Read

11111111 INGUT “XFF

- 257 -

