Hardware Scrolling Patch for the Model 100

S. Adolph

March 2022
Introduction

This patch is intended to reduce the scrolling times for the Model 100 and Tandy 102 laptops. The 10 LCD drivers used (HD44102) support hardware scrolling. Implementation of hardware scrolling should reduce the time to scroll the screen, since currently the computer manually updates every location in the LCD RAM as well as the drivers themselves. Hardware scrolling should reduce the time it takes to copy data into the LCD drivers.

Theory of Operation

Currently, the model 100 scrolls the screen manually, by copying data line by line to both the LCD RAM as well as the LCD drivers.
The HD44102 device is capable of a hardware scrolling mechanism that allows lines to be quickly shifted, leaving only the last line requiring new data. Please refer to the datasheet for the HD44102 device. This device displays data vertically on the LCD according to the contents of the internal page register. In the M100, this register is always 00. However, writing (00, 01, 10, 11) allows the order of display of the 4 vertical pages to be shifted.

Further, the page register can be assigned simultaneously for all 10 LCD drivers. Once the pages have been shifted, there remains only 1 line of data to update with new text per group of 5 LCD drivers. The M100 display is organized such that 5 LCD drivers control the top half, while the remaining 5 drivers control the bottom half.

The approach to improved scrolling will be as follows:

· Changes will be implemented in the main ROM by using a pre-existing modification that clears about 150 bytes for new code (the “base patch”)

· the page register will be to scroll the LCD driver data

· the current “top of page” indication will be stored in RAM, using data bytes in “Hayash” directory entry (avoiding TS-DOS use of this space as well)
· Several internal ROM routines will be redirected into the 150 byte space, where the necessary changes to the routines will be made.

When the entire screen is scrolled, 2 hardware scrolls, one line erase, and one copy are required. Screen scroll is implemented primarily by intercepting the scroll up and scroll down control code sequences, ESC-M and ESC-L. When a full screen scroll is detected, the general process that is followed is described here:

· ESC-M or ESC-L is detected

· The register contents indicate if the entire screen is to be scrolled. If not the full screen then the routine operates unmodified.

· When less than the entire screen is being scrolled, hardware scrolling may actually bring benefits but (1) it is much harder to implement and (2) in general the benefit is reduced, many more lines must be copied.

· A way to defeat hardware scrolling is to enable the LABEL LINE. This patch is disabled whenever LABELS are displayed

· For the first half of the screen scroll, the routines that copy data from LCD RAM to the LCD drivers is disabled, and half of the LCD drivers are hardware scrolled
· In order to copy 1 line of data from one set of drivers to the other, this copy routine is re-enabled for the needed line copy only

· Then this routine is again disabled for the 2nd half of the screen scroll, and the remaining drivers are then hardware scrolled.
· Lastly the existing routine erases the new line.

The page register values in use in the LCD drivers must be stored in memory, as it cannot be read back from the LCD drivers themselves. The screen update ROM routines must be aware of the state of the LCD drivers in order to update individual characters correctly.

Compatibility with existing M100 software

This patch should be compatible with the standard model 100 and T102. This patch will not be compatible with any of the enhanced screen utilities. Changes to these rom routines will not affect DVI usage. Testing and bug reports are always appreciated.
Proposed RAM location for Controller page register data

Since the page register is write-only, it will be necessary to track the state of the page register, so that software may identify actual screen lines with pages within the controller’s memory. This memory location should survive power cycles, but should be reset to ‘00’ on resets, and warm/cold boots. It is required that this memory location should survive unchanged during power cycles, since the controllers themselves will not restart to the same page register state, and since programs themselves continue to operate through power cycling. The screen data in memory must be displayed identically before and after a power cycle.

On cold or warm restart, the screen is completely re-freshed, so simply restoring page to ‘00’ is sufficient.

One memory location will be used to store the page register state. This is needed to facilitate the separate scroll process for top and bottom LCD driver groups.
Location F9AD is the current proposal. This byte is the s in the name “Hayash” stored in ROM at 6C3C. This byte needs to be patched to 00 in the ROM at 6C3C also. They appear to survive correctly and not affect the operation of the machine. Additional data is stored in the name, so in total 2 bytes in “Hayash” will be used. There is always a chance that some other software will make use of this location; testing is required to understand any conflicts.
The page byte may only take on the values 00H, 40H, 80H, C0H. No error checking will be provided to ensure this is adhered to.
Analysis of scrolling functions

As stated above, hardware scrolling is only implemented in the case where the entire screen is scrolled. The below tables show in general how the lines are moved during scrolling, for some of the common scroll conditions.

In general, the scroll routines shift lines either up or down depending on where on the screen the escape code is sent.
Opportunities to hardware scroll either top or bottom are indicated in blue. In these cases three lines can be shifted by hardware, with the last line being copied in.

Situations that must remain as software scrolls are indicated in pink. All lines must be copied via software, with no hardware scrolling

Situations where a variant of hardware scroll might bring benefit are indicated in orange. In such cases 2 lines may be hardware scrolled, while 2 lines must be software copied.

When the LABEL line is activated, the bottom half of the screen can never benefit from a full hardware scroll.
Different scenarios for Scroll Up and Scroll Down are captured below.

Scroll Up
	hw scroll
	sw scroll
	special case

LABEL line active

	
	
	Line
	line
	Line
	line
	Line
	line
	Line
	line

	
	Scroll Up
	8
	7
	6
	5
	4
	3
	2
	1

	
	line 8 std
	
	
	
	
	
	
	
	

	line L
	Original state
	
	
	
	
	
	
	

	0
	A
	B
	A
	A
	A
	A
	A
	A
	A

	1
	B
	C
	C
	B
	B
	B
	B
	B
	B

	2
	C
	D
	D
	D
	C
	C
	C
	C
	C

	3
	D
	E
	E
	E
	E
	D
	D
	D
	D

	4
	E
	F
	F
	F
	F
	F
	E
	E
	E

	5
	F
	G
	G
	G
	G
	G
	G
	F
	F

	6
	G
	H
	H
	H
	H
	H
	H
	H
	G

	7
	H
	blank
	blank
	blank
	blank
	blank
	blank
	blank
	blank

	
	
	
	
	
	
	
	
	
	

	
	
	2 HW
	1 HW,
	1 HW,
	1 HW
	1 HW
	
	
	

	
	
	1 copy
	3 copies
	2 copies
	1 copy
	
	2 copies
	1 copy
	

LABEL line inactive

	
	
	
	line
	Line
	line
	Line
	line
	Line
	line

	
	Scroll Up
	
	7
	6
	5
	4
	3
	2
	1

	
	line 8 lock
	
	
	
	
	
	
	
	

	line L
	Original state
	
	
	
	
	
	
	

	0
	A
	B
	A
	A
	A
	A
	A
	A
	

	1
	B
	C
	C
	B
	B
	B
	B
	B
	

	2
	C
	D
	D
	D
	C
	C
	C
	C
	

	3
	D
	E
	E
	E
	E
	D
	D
	D
	

	4
	E
	F
	F
	F
	F
	F
	E
	E
	

	5
	F
	G
	G
	G
	G
	G
	G
	F
	

	6
	G
	blank
	blank
	blank
	blank
	blank
	blank
	blank
	

	7
	H
	H
	H
	H
	H
	H
	H
	H
	

	
	
	
	
	
	
	
	
	
	

	
	
	
	1 HW,
	1 HW,
	1 HW
	1 HW
	
	
	

	
	
	
	3 copies
	2 copies
	1 copy
	
	2 copies
	1 copy
	

Scroll Down
LABEL line active
	
	
	Line
	line
	Line
	line
	Line
	line
	Line
	line

	
	Scroll Down
	1
	2
	3
	4
	5
	6
	7
	8

	
	line 8 std
	
	
	
	
	
	
	
	

	line L
	Original state
	
	
	
	
	
	
	

	0
	A
	blank
	A
	A
	A
	A
	A
	A
	A

	1
	B
	A
	blank
	B
	B
	B
	B
	B
	B

	2
	C
	B
	B
	blank
	C
	C
	C
	C
	C

	3
	D
	C
	C
	C
	blank
	D
	D
	D
	D

	4
	E
	D
	D
	D
	D
	blank
	E
	E
	E

	5
	F
	E
	E
	E
	E
	E
	blank
	F
	F

	6
	G
	F
	F
	F
	F
	F
	F
	blank
	G

	7
	H
	G
	G
	G
	G
	G
	G
	G
	blank

	
	
	
	
	
	
	
	
	
	

	
	
	2 HW
	1 HW,
	1 HW,
	1 HW
	1 HW
	
	
	

	
	
	1 copy
	3 copies
	2 copies
	1 copy
	
	2 copies
	1 copy
	

	
	
	
	
	
	
	
	
	
	

	
	
	
	line
	Line
	line
	Line
	line
	Line
	line

LABEL line inactive

	
	Scroll Down
	1
	2
	3
	4
	5
	6
	7
	8

	
	line 8 lock
	
	
	
	
	
	
	
	

	line L
	Original state
	
	
	
	
	
	
	

	0
	A
	blank
	A
	A
	A
	A
	A
	A
	

	1
	B
	A
	blank
	B
	B
	B
	B
	B
	

	2
	C
	B
	B
	blank
	C
	C
	C
	C
	

	3
	D
	C
	C
	C
	blank
	D
	D
	D
	

	4
	E
	D
	D
	D
	D
	blank
	E
	E
	

	5
	F
	E
	E
	E
	E
	E
	blank
	F
	

	6
	G
	F
	F
	F
	F
	F
	F
	blank
	

	7
	H
	H
	H
	H
	H
	H
	H
	H
	

	
	
	
	
	
	
	
	
	
	

	
	
	1 HW,
	
	
	
	
	
	
	

	
	
	3 copies
	5 copies
	4 copies
	3 copy
	2 copies
	1 copy
	
	

LCD ports on the M100

185, B9 LCD driver select, bits 7..0

186, BA LCD driver select, bits 0,1

254, FE LCD driver control and status – bits 7,6 – bank select - bits 5-0 byte select

255, FF LCD driver data

LCD controller physical mapping by bit number

0
1
2
3
4

5
6
7
0
1
port 185, port 186
Hardware Scrolling Functional Description / Patches
Routines that deal with scrolling directly:

44C4H
Escape M routine

44D2H

Scroll up

44EAH
Escape L routine

44FAH
Scroll down

4566H

Character plotting

Routines that are affected by introducing LCD controller page register state

74F7H
Byte plotting

752BH

Set Page
Patch Descriptions

Escape-M @ 44C4H
· Hardware scroll condition is detected

· Scroll active flag is set

· hardware scroll for top and bottom drivers at the same time
· return to 44D2H routine

Scroll up @ 44D2H
· here, the return from software scrolling is intercepted

· scroll active flag is disabled here
Escape-L @ 44EAH
· Hardware scroll condition is detected

· Scroll active flag is set

· hardware scroll for top and bottom drivers at the same time
· return to 44EAH routine
Scroll down @ 44FAH
· here, the return from software scrolling is intercepted

· scroll active flag is disabled here
Character plotting @ 4566H

· here the scroll active flag is tested
· if a scroll is active then we look for the special condition where the line being “software scrolled” is occurring
· when this happens, we actually employ the routine at 73EEH to copy the new line into the LCD drivers, the source being Video RAM
· if scroll is not active, then carry on to 73EEh
Changes to “Hayash” @ 6C73H
· 1 byte for page register storage

· 1 byte for scroll active flag

· These 2 bytes are copied to RAM.
Byte plotting @ 74F7H
· The value of the b register must be corrected to use the page register
Set Page @ 752BH
· The page setting routine is modified to use the page register
· In addition, this routine is used to set page for the ESC-M and ESC-L routines.

Patch Details

The main ROM is intercepted in the following locations
Escape-M @ 44C4H
	
	original
	patch

	44CFH
	JZ 4535H
	JMP TRAP_M

Scroll up @ 44D2H
	
	original
	patch

	44E7H
	JMP 4535H
	JMP RET_M

Escape-L @ 44EAH
	
	original
	patch

	44F9H
	JZ 4535H
	JMP TRAP_L

Scroll down @ 44FAH
	
	original
	patch

	44FAH
	JMP 4535H
	JMP RET_L

Character plotting @ 4566H
	
	original
	patch

	4573H
	CALL 73EEH
	CALL stop_access

Changes to “Hayash” @ 6C3CH
	
	original
	patch

	6C3CH
	“sh”
	
.db
00h, 00h

Byte plotting @ 74F7H
	
	original
	patch

	74F7H
	PUSH D

PUSH PSW

MOV A,B
	CALLcorrect_b

Set Page @ 752BH
	
	original
	patch

	752BH
	CALL 7533H

MVI A,3EH
	
call
set_page

ori
3EH

Patch code @ 75AB
;---

; Hardware Scroll Patch

;---

page_loc:

.equ
0F9ADH

scroll_active:
.equ
0F9AEH

.org
0000

;---

; hook into Scroll down

;---

.org
044CFH

call
TRAP_M

.org
44E7H

jmp
RET_M

;---

; hook into Scroll up

;---

.org
044F6H

call
TRAP_L

.org
0450FH

jmp
RET_L

;---

; hook into 4566 routine

;---

.org
4573H

call
stop_access

;---

; change to Hayash default value

;---

.org
06C3CH

.db
00h

; page_loc data 6C3C -->F9AD

.db
00h

; scroll status 6C3D -->F9AE

;---

; hook into byte plotting

;---

.org
74F7H

jmp
correct_b

;---

; hook into set page

;---

.org
0752BH

call
set_page

ori
3EH

; called from set_page

out
0FEH

ret

;---

; Patch code - place in hole at 75AB - 763F

;---

.org
75ABH

;---

; TRAP_M (11 bytes)

;---

TRAP_M:

; A holds # of scrolls, L is the line number to process first

; return vector on stack

pop
d

jz
4535H

; if zero set, erase current line and done.. return to caller

push
d
; do a scroll up on upper and lower LCD drivers

lxi
d,0C028h
; d= C0h, e = 40d, 28H

jmp
TRAP_C

;---

; TRAP_L (22 bytes)

;---

TRAP_L:

; A holds # of scrolls, L is the line number to process first

; return vector on stack

pop
d

jz
4535H

; if zero set, erase current line and done.. return to caller

push
d

; scroll down on upper and lower LCD drivers

lxi
d,04027h
; d= 40h, e = 39d, 27H
;
jmp
TRAP_C

TRAP_C:

cpi
07d

rnz

; if a <>7 then return and process normally

push
psw

mov
a,e

sta
scroll_active

push
h

call
set_new_page

pop
h

pop
psw

ret

;---

; RET_M RET_L (6 bytes)

;---

; a is always zero on jump in.

; use this to just clear the scroll active flag

RET_M:

RET_L:
;xra
a

sta
scroll_active
; disable scroll active

jmp
4535H

;---

; stop_access (14 bytes)

;---

; prevent character plotting level 7 when hardware scrolling

stop_access:

lda
scroll_active

ora
a

jz
073EEh

; if scroll not active then continue with character plotting

; scroll is active

add
e

; sum of e and a

cpi
44d

; some number out of normal range but same for both

jz
073EEh

; process the line if we are in the copy condition

ret

; if scroll not active then continue with character plotting

;---

; set_new_page (6 bytes)

;---

set_new_page:

; d holds subtract amount, 40 for down and C0 for up

lxi
h, page_loc

; set location

mov
a,m

sub
d

mov
m,a

;---

; set_page (15 bytes)

;---

set_page:
; 752EH is on stack

mvi
c,03d

call
7657H

; short delay

lxi
h,7641H

call
0753BH

; enable LCD drivers

lda
page_loc
; load page data

ret

;---

; correct_b (13 bytes)

;---

correct_b:

; all registers in use

push
d

push
psw

; store PSW

lda
page_loc
; ok to just use the one page value as they should be the same

Add
b

; EXCEPT during a page scroll

mov
c,a

; temp store

pop
psw

push
psw

; make sure flags are the same as initial

mov
a,c

; restore, hopefully C is not used

jmp
074FAH

; jump back into routine

; just leave B as is; manipulate A to be the corrected page

Initialization of page.

Routine at 752BH initializes the page to 00.

This routine is called at:
· warm start routine at 6D0CH calls 752BH which initializes page register to 00

· character plotting level 7 calls 752BH which initializes page to 00

Need to confirm that on power up, this is configured. Should be. Do we care? Whatever the value is, all that matters maybe is that for any one session it is only changed to capture scrolls.

Therefore, a patch at the routine 752BH is required to load the contents of F9AAH and send that to the LCD drivers.

Setting page.

Page register is set via write to port 254 of values (62, 126, 190, 254) (3E, 7E, BE, FE) – probably 62 = 00111110

OUTput xx11 1110 binary on port FE as per 752BH, where xx is page. 00, 01, 10, 11.
Any routine that writes to the LCD at a low level must adjust how data is written to accommodate the page setting.

Note: it is probably ok to power cycle, and have the page be set correctly simply through this one patch. On power up, the page value will be read back and applied.

The “Base Patch”
The hardware scrolling patch builds on the so-called Base patch, which provides about 150 free bytes to use for modifications to the M100 ROM.
The basis of this patch is the observation that the PIO data table could be reduced from 240 bytes to 80 bytes. This change forces a rewrite of a short section of a routine.

Changes to 8155 PIO bit patterns for upper/lower LCD drivers at 7551H

New LCD data table at 7551H to 75A0H. Table is reduced from 240 bytes to 80 bytes. This table was reduced by noting the following-

· the data was redundant with the table at 7643H, so the repetition could be removed (240(160 bytes).

· the upper and lower LCD table differences can be managed via the table at 7643H also. (160(80 bytes)

The original 2 tables are organizes as triplets. The first two bytes are redundant with table 7643H (and so can be replaced by a pointer), while the remaining bytes is the column offset data for preparing the command byte for the LCD driver.

In the new table, the data is organized as pairs. The first byte in the pair provides an offset to table 7643H, for providing programming data for port 185 and 186. The next byte in the pair is the column offset data for preparing the command byte for the LCD driver.

This reduction in data space comes at the expense of about 10 bytes of code, and changes in subroutine 74A2H – byte plotting. The space from 75ABH to 763F1H is free for use by routines.

The original table at 7551H was about 240 bytes:

Upper LCD driver data – 7551 to 75C8 – 15x8 = 120 bytes

Lower LCD driver data – 75C9 to 7639 – 15x8 = 120 bytes

The new table at 7551H is from 7551 to 75A0 – 10x8 = 80 bytes :

7551H
00H,00H,00H,06H,00H,0CH,00H,12H,00H,18H,00H,1EH,00H,24H,00H,2AH,00H,30H

02H,04H,02H,0AH,02H,10H,02H,16H,02H,1CH,2H,22H,02H,28H,02H,2EH

04H,02H,04H,08H,04H,0EH,04H,14H,04H,1AH,04H,20H,04H,26H,04H,2CH

06H,00H,06H,06H,06H,0CH,06H,12H,06H,18H,06H,1EH,06H,24H,06H,2AH,06H,30H

08H,04H,08H,0AH,08H,10H,08H,16H,08H,1CH,08H,22H

To use the new table, changes are needed to the routine PLOT/UNPLOT at 744DH.

At 7467H, swap this code

	
	Original
	patch

	7467H
	JNC 746DH
	LXI H,7643H

	746AH
	LXI H,764DH
	CALL 75A1H

	746DH
	DAD B
	NOP

	746EH
	MOV B,A
	NOP

Which loads HL with a pointer to the table at 7643H, and then calls a patch routine at 75A1H.

	75A1H
	JNC 75A6H

	75A4H
	MVI L,4DH

	75A6H
	MVI B,00H

	75A8H
	DAD B

	75A9H
	MOV B,A

	75AAH
	RET

Here, the pointer is corrected depending on the carry flag. B is assigned the contents of A, and HL points to the correct data in the table at 7643H.

In fact this patch is not needed for the PLOT/UNPLOT routine directly, but it allows for the next change to be more efficiently accomplished. In effect this is a hook into this routine for future use.

The Byte plot routine at 74A2H is the main modification. At 74BBH, the routine is rewritten to be the following.

	74BBH
	RLC
	ROTATE ACCUMULATOR LEFT (*2)

	74BCH
	MOV C,A
	PLACE RESULT IN C

	74BDH
	MOV B,00H
	LOAD B WITH 00

	74BFH
	LXI H,7551H
	POINT TO TABLE

	74C2H
	DAD B
	ADD OFFSET

	74C3H
	MOV C,M
	LOAD NEXT TABLE OFFSET BYTE IN C

	74C4H
	INX
	INCREMENT HL

	74C5H
	MOV A,M
	LOAD COMMAND DATA IN A

	74C6H
	PUSH PSW
	push command data

	74C7H
	LDA FFF4H
	LOAD A WITH ROW DATA

	74CAH
	RAR
	ROTATE RIGHT

	74CBH
	RAR
	ROTATE RIGHT

	74CCH
	RAR
	ROTATE RIGHT

	74CDH
	LXI H,7643H
	Point to table

	74D0H
	CALL 75A1H
	Adjust pointer to correct location
	

	74D3H
	CALL 753BH
	; Enable LCD drivers after short delay

	74D6H
	SHLD FFF6H
	STORE POINTER TO LCD TABLE

	74D9H
	POP PSW
	reload A with command data

	74DAH
	ORA B
	FORM THE DATA WORD

	74DBH
	MOV B,A
	PLACE WORD IN B

	74DCH
	POP H
	
	

	74DDH
	DCR D
	
	

	74DEH
	CALL 74F7H
	this routine sends a byte as a command, and reads or writes E values depending on D

	74E1H
	INR D
	restore D to original value

	74E2H
	MVI A,06H
	load A with 06

	74E4H
	SUB E
	
	

	74E5H
	RZ
	if 6 bytes were intended to be written, then return, else the remainder must be written to the adjacent driver

	74E6H
	MOV E,A
	put the remainder into E

	74E7H
	PUSH H
	
	

	74E8H
	LHLD FFF6H
	
	

